Year 9 Data Representation - Part 1 Knowledge Organiser

Binary (Base 2)

The only thing that computers understand is

Binary.	8	4	2	1	1	$=$		ON
$0101=5$	0	1	0	1				
01011111	=95				0	$=$		OFF

128	64	32	16	8	4	2	1
0	1	0	1	1	1	1	1

Convert these binary numbers into denary:

1) 1010
2) 1011
3) 0001
4) 1011
5) 1001
6) 0011

7) 0110
8) 0111
9) 0100

Convert these denary numbers into binary

 (4 bits):

The ones and zeros in Binary represent 'bits. Each ' 1 ' or ' 0 ' is one 'bit'.

COMPUTATIONAL THINKING

Flowcharts

We use flowcharts to help us put instructions in order

Representing Text

When any key on a keyboard is pressed, it needs to be converted into a binary number so that it can be processed by the computer and the typed character can appear on the screen.

Representing Images

Bitmaps are the name given to one way of storing graphics on a computer system.

A bitmap is laid out in a grid format with each box on the grid containing one "Picture element" which is better known as a "Pixel".

The picture below shows us how a picture can be represented by numbers.

Can you remember how the numbers on the left represent the 'pixels' on the right?

