Year 9 Data Representation – Part 1 Knowledge Organiser

Binary (Base 2)

0

1

0

1

The only thing that computers understand is Binary. 8 4 2 1 ON 1 = 0101 = 5 | 0 | 1 0 1 0 OFF = **01011111**= 95 2 128 64 32 16 8 4 1

Convert these t	inary numbers	s into dena
1) 1010	6) 10	011
2) 1010	7) 00	001
3) 0110	8) 10	011
4) 0111	9) 10	001
5) 0100	10) 00	011

1 1 1 1

		(4 bits):		
11)	14	16)	6	
12)	2	17)	11	
13)	10	18)	15	
14)	4	19)	2	
15)	3	20)	12	

The ones and zeros in Binary represent 'bits. Each '1' or '0' is one 'bit'.

Flowcharts

We use flowcharts to help us put instructions in order.

Representing Text

When any key on a keyboard is pressed, it needs to be converted into a binary number so that it can be processed by the computer and the typed character can appear on the screen.

Representing Images

Bitmaps are the name given to one way of storing graphics on a computer system.

A **bitmap** is laid out in a grid format with each box on the grid containing one **"Picture element"** which is better known as a "Pixel".

The picture below shows us how a picture can be represented by numbers.

Can you remember how the numbers on the left represent the **'pixels'** on the right?