
2.2 PROGRAMMING FUNDAMENTALS

DATA TYPES

Data
Type

Definition

String Text eg: “Hello”
Integer Whole number eg: 32
Float/Real Decimal number eg: 1.2
Boolean Two values eg: true or false
Character A single character eg: b

Casting is when you want to change
between data types. Eg – if you want to
use an integer in a sentence you would
need to convert it to a string.

OPERATORS

Operator/Function Definition
Exponentiation Raises a number to a power eg: 2**3 OR 2 ^3 (=23)
Quotient/DIV Gives the whole number after a division
Remainder/MOD Gives the remainder part of a division
== Is equal to
! or <> Is not equal to
< Is less than
> Is more than
>= Is more than or equal to
<= Is less than or equal to

ARRAYS

One-Dimensional Arrays- this is like a list.
In this example an array has been created called
students. The list can hold 3 items (as shown).

This command would print the second item (1)
From the array. It would print “Dave”.

Two-Dimensional Arrays – these are lists within lists (like a table)

The code above creates the 2D array. The code
Below would output:
“Bob’s first test score was 22%”

array students [3]
students [0] = “Bob”
students [1] = “Dave”
students [2] = “Bob”

print(students[1])

0 1 2

0 Bob 22% 44%

1 Dave 85% 100%

Grades=[[“Bob”, “22%”, “44%”], [“Dave”,
“85%”, “100%”]]

print(“Bob’s first test score was “ + Grades [0, 1]

VARIABLES AND CONSTANTS

Variable – A value which may change
while the program is running. Variables
can be local or global.

Local Variable – a variable which can
only be used within the structure they
are declared in.

Global Variable – a variable which can
be used in any part of the code after
they are declared

Constant – A value which cannot be
altered as the program is running.

2.2 PROGRAMMING FUNDAMENTALS CONTINUED

STRING MANIPULATION

0 1 2 3 The characters in a string are numbered starting
W o r d with position 0.

Function Purpose
x.length Gives the length of the string
x.upper Changes the characters in the string to upper case
x.lower Changes the characters in the string to lower case
x[i] Gives the character in position i. Eg: x[2] = “r”
x.substring(a,b) Gives the characters from position a with length b.

Eg: x.subString(1,2) = or
+ Joins (concatenates) two strings together

FILE HANDLING

Myfile=openRead(“myfile.text”) Opens the file in read mode
Myfile=openWrite(“myfile.text”) Opens the file in write mode
Myfile.writeLine (“Hello”) Writes a line to the file
Line1=myfile.readLine() Reads one line of the file
Myfile.close() Closes the file
endOfFile() Used to determined the end of a file

PROGRAMMING CONSTRUCTS

A Sequence is when there are
programming steps that are
carried out one after another.

Selection is where there are
different paths in your code
eg: IF, ELIF, ELSE

Iteration is when there is
repetition (loops) in code.
This could be a WHILE loop (do
something WHILE a condition is
met) or a FOR loop (do
something for a set number of
times)

This count-controlled loop would print
“Hello World” 8 times.:
for i=0 to 7

print (“Hello”)
next i

These condition controlled loops would
check if a password’s correct:

while answer != ”letmein123”
 answer=input(“Enter password”)
endwhile

do
 answer=input(“Enter password”)
until answer==”letmein123”

IF/ELSE AND SWITCH/CASE FOR SELECTION

Selection can be shown using IF/ELSE or SWITCH/CASE

IF ELSE SWITCH/CASE
If choice == “a” then
 print(“You chose A”)
elseif choice==”b” then
 print(“You chose B”)
else
 print(“Unrecognised choice”)

Switch entry:
 case “A”:
 print(“You chose A”)
 case “B”:
 print(“You chose B”)
 default:
 print(“Unrecognised choice”)

2.2 PROGRAMMING FUNDAMENTALS CONTINUED

SUB PROGRAMS

Procedures are a set of instructions stored under a name so that you
can call the procedure to run the whole set of instructions.
A function is like a procedure but always returns a value.
Parameters are variables used to pass values into a function or
procedure.

A procedure with parameters A procedure without parameters
procedure intro (name)
 print(“Hello “ +name)
 print(“Welcome to the game”)
endprocedure

procedure intro ()
 print(“Hello”)
 print(“Welcome to the game”)
endprocedure

Functions must take at least one parameter and must return a value:

function double(number)
 print number*3
endfunction

RECORDS

Records are a data structure used to store
a collection of data. They can store
information of different data types.
Field = each item in a record is a field.
Each field has a name and data type.

A record can be created like this:

Data can be assigned using variables:

The whole record can be accessed using the
variable name:

(1, “Bob Jones”, True)

or part of a record can be accessed:

Sally Roberts

SQL (Structured Query Language)

SQL is the language used to manage and search databases.

Commands Example What it does
SELECT
FROM

SELECT name, age
FROM students

Displays the name and age of
everyone in the students table

WHERE SELECT name FROM students
WHERE gender=male

Displays the name of everyone in
the students table who’s gender
is male

LIKE SELECT name FROM students
WHERE name LIKE “% Smith”

Displays the students names that
end with Smith.

AND SELECT name FROM students
WHERE gender=male AND
attendance > 90

Displays the students who are
male and have an attendance of
more than 90.

* SELECT * from students Selects all of the fields from
the students table

record students
 int student_number
 string student_name
 bool passed_test
endrecord

Student1=students(1,”Bob Jones”, True)
Student2=students(2,”Steve Smith”, False)
Student3=students(3,”Sally Roberts”, True)

print(Student3.student_name)

print(Student1)

