

Unit 2.1 Elements of Computational Thinking
Inputs and Outputs

• An input is any data required to solve the

problem.

• These may be entered by the user, or

obtained from hardware such as a sensor.

• Outputs are the solutions to the problem

which are returned.

• They can only be produced once the

input has been processed.

• It is important to consider the methods

used to capture data from the user and to

present it back to them.

• Think about the data structures used.

• Think about the devices used.

• Think about what outputs are needed

first.

• Use this information to consider what

inputs are needed to produce the

required output.

Creating an Abstraction

Model
• What problem needs to be

solved?

• Who will use the model?

• How will the model be

used?

• Which are the key elements

of the problem for the

people using the model and

how they will use it?

Abstraction and Reality
• Abstraction is more simplified than reality.

• Real world items are simplified into computer

structures such as a table, variable or

database.

• Objects used in object oriented programming

can be an abstraction of real world entities.

• Attributes can represent the characteristics of a

real world object.

• Methods can represent the actions a real world

object may perform.

The Need for Abstraction
• Allows those who are not experts in a field to use

systems by hiding more complex information which

is irrelevant to using the system.

• Allows more efficient design by encouraging focus

on the core elements of a problem.

• Reduces the time spent on a project.

• Prevents a project becoming too large or complex.

• Low-level programming languages directly interact

with hardware but are hard to write so high-level

languages abstract the machine code that is

executed when a program is run.

• The TCP/IP model is an example of abstraction in

networking.

Procedural Abstraction
• Allows a programmer to use a function without

understanding the detail of its implementation.

• Used with data structures and in decomposition.

• Models the purpose of a subroutine without

considering how it does what it does.

Abstraction by

Generalisation
• Similar elements of

a problem may be

grouped together.

• This allows

common problems

to be categorised.

• They can then be

solved with a

common solution.

Data Abstraction
• Programmers may use complex data structures without

needing to understand how they are implemented in detail.

• How data is being stored and filtered.

Abstraction
• Removing unnecessary

detail.

• Representing the key

elements of the

problem.

• Must consider what

information is actually

relevant to the problem

at hand.

• Complex problems can

be split into several

layers of abstraction.

• Higher layers are

closer to the user,

possibly providing a

user interface.

• Lower levels interact

with the computer.

Reusable Program Components
• Common functions can be packaged

into a library.

• This makes it easier to reuse them

throughout a project.

• Abstract data structures, subroutines

and classes can all be reused in this

way.

• Decomposition is used to indicate

where components of an existing

program can be reused.

• Reusable components have already

been tested and so are more reliable.

• They make development less time

consuming and therefore less costly.

Preconditions
• Things which are needed

before the program can

run.

• The code expects the

information passed to it to

meet certain criteria.

• The code may test for these

when it is run.

• They may instead be

included within

documentation.

• Including this information

within documentation

reduces the complexity of

the program and makes it

easier to use.

• Preconditions make it

easier to reuse subroutines.

Decision Making
• There are many

decisions involved with

making and designing

programs.

• It is important to

consider these

decisions carefully.

• Often, the available

choices for a decision

may be limited,

simplifying the decision.

• Identifying the

decisions which need

to be made allows

information to be

gathered on potential

choices.

• In flow charts, decisions

are represented by

diamonds.

Decisions Affecting Program Flow
• There may be many routes through a program.

• Decisions by the user will affect the route

taken.

• It is important to identify places where the user

will need to make a decision and plan for the

decisions they may make.

Conditions

Affecting a Decision
• Effectiveness

• Convenience

• Cost

• Efficiency

• Relevance

• Available skills and

resources

• All these conditions

are important.

• Some may be more

important to a

particular decision.

The Order of Steps
• It is important to consider the order in which

operations are performed.

• Certain inputs may be required before processing.

• Inputs may need to be validated, this must occur

after the input is received and before it is

processed.

• It may be possible for several subroutines to be

executed at the same time.

• Also consider how subroutines interact with one

another.

• Code should be written to prevent operations

occurring in an order which would cause an error or

prevent the program from functioning as intended.

Problem Decomposition
• Breaking down a large problem into smaller parts.

• These smaller parts are easier to solve.

• The smaller parts are easy to divide among a team.

• Top down design, also called stepwise refinement is often

used to do this.

• This technique divides a problem into levels of complexity.

• Problems are broken down over and over until each problem

is a single task.

• Each task can then be solved with a single subroutine.

• Subroutines can be tested and developed separately.

• Consider how each subroutine is implemented.

• The subroutines need to be joined to form the whole solution.

• Start with the lowest level components and work up.

• Some tasks may be solved with an existing module or library.

Working Concurrently

Concurrent Thinking

• Considering more than one task at the

same time.

• All the tasks need not be actively worked

on at the same time.

• Giving parts of your time to different tasks

throughout the day.

• Parts of multiple problems are often related,

allowing them to be solved concurrently.

Concurrent Processing

• Parallel processing is where multiple

processors are used to complete the same

task more quickly.

• Concurrent processing is where a single

processor works on multiple tasks at the

same time.

• This gives the appearance the tasks are

concurrently completed, but in reality they

are completed one after the other in quick

succession.

Advantages of Concurrent Processing

• More tasks can be completed in a given

time.

• Other tasks can be completed whilst

awaiting a user decision meaning less time

is wasted.

Disadvantages of Concurrent Processing

• Can take longer to complete a large

number of tasks since processes cannot be

completed at once.

• Some processor time is used to switch

between and coordinate processes,

reducing overall throughput.

• Not all tasks are suited to being completed

in this way.

Caching (ALEVEL ONLY)
• Values or information can be

stored in memory after use.

• This makes it quicker to retrieve

them if they are needed again.

• Web pages are also cached in

this way to improve load times

and reduce bandwidth usage.

• Prefetching uses an algorithm to

predict which instructions may be

needed next and store them in

cache before they are needed.

• This reduces the need to wait for

an instruction to be loaded.

• The accuracy of the algorithm’s

predictions influences the

effectiveness of this technique.

• A large cache can take a long

time to search.

• Caching and prefetching can be

difficult to implement.

