

Unit 2.2 Problem Solving and Programming

Integrated Development Environment
• Programs used to write code.

• Contains a set of tools which make it easier for

programmers to write, develop and debug code.

• May include stepping, variable watching,

breakpoints, source code editor and debugging

tools.

Functions and

Procedures
• Named code blocks

which perform a

particular task.

• Functions must always

return a single value.

• Procedures do not have

to return a value.

• Parameters can be

passed to them by

either reference or

value.

Passing by Reference
• The address of the

parameter only is given

to the subroutine.

• The subroutine works

on the value at the

given address.

Passing by Value
• A copy of the value is

passed to the

subroutine.

• The original value is

unchanged.

• The copy is deleted at

the end of the

subroutine.

• Exam questions will use

this technique unless

told otherwise.

• Exam questions will use

the format function

function(x:value,

y:value)

Modularity
• Large or complex programs can

be split into smaller self

contained modules.

• This makes it easier to divide

tasks between a team and

manage the project.

• It simplifies maintenance since

each component can be handled

individually.

• It improves the reusability of

code.

• Top Down (Stepwise) Refinement

• A technique used to modularise

programs.

• The problem is broken into sub

problems until each sub problem

is a single task.

• Modules form blocks of code

called subroutines.

Variables
• Variables can be either global or local scope.

• Scope refers to the section of code where the

variable can be accessed.

• A local variable in a subroutine has

precedence over a global variable with the

same name.

Local Variables
• Can only be accessed within the subroutine

where they were defined.

• Multiple variables with the same name can

exist in different subroutines.

• Are deleted when the subroutine ends.

• Ensures subroutines are self contained.

Global Variables
• Can be accessed through the whole program.

• Used for values needed throughout the

program.

• Risk the variable is unintentionally edited.

• Uses memory for longer.

Programming Constructs
• Sequence – Code is executed line by line from the

top down.

• Breaching – A block of code is run only if a condition

is met using IF and ELSE statements

• Count Controlled Iteration – A block of code is run a

certain number of times. Uses FOR, WHILE or

REPEAT UNTIL statements.

• Condition Controlled Iteration – A block of code is

run while or until a condition is met. Uses FOR,

WHILE or REPEAT UNTIL statements.

Recursion
• When a subroutine calls

itself during execution.

• Continues until a stopping

condition is met.

Advantages
• Requires fewer lines of

code.

• Easier to express functions

such as factorials

recursively.

Disadvantages
• Risk of stack overflow if

memory runs out.

• Often challenging to trace

and locate errors.

Object Orientated Techniques
• Object oriented programming

languages use classes.

• A class is a template for an object.

• An object is an instance of a class.

• It defines the behaviour and state

of objects.

• Object state uses attributes.

• Object behaviour uses methods.

• Encapsulation is used to edit

attributes.

• Top down design applies

encapsulation to modules.

• Modules are built to be

self contained and reusable.

Can a Problem be Solved by

Computational Methods?
• Not all problems can be solved in this way.

• Some may need too many resources or

time.

• Problems which can be solved using

algorithms lend themselves well to being

solved via computational methods.

• We must identify whether the problem can

be solved using computational methods

before we attempt to solve it.

Problem Recognition
• Stakeholders say what they need from the solution.

• This information is used to produce a clear list of system requirements and a

definition of the problem.

• We may consider the strengths and weaknesses of a current system.

• We may consider the required inputs, outputs and the volume of stored data.

Problem Decomposition
• The problem is broken down into smaller

subproblems.

• This is repeated until each subproblem can be

represented using a single subroutine.

• This reduces the complexity of the problem

and makes it easier to solve.

• It enables programmers to see which areas can

be solved using pre-existing libraries or

modules.

• It makes the project easier to manage.

• Subproblems can be assigned to different

specialist teams or individuals.

• Modules can be designed and tested

individually before being combined.

• It makes it possible to develop modules in

parallel and therefore finish more quickly.

• It is easier to debug the code and locate errors.

Divide and Conquer
• A problem solving

technique with

three parts.

• Divide - halve the

size of the

problem with each

iteration.

• Conquer - solve

the subproblems.

• Merge - combine

the solutions.

• It is applied in

binary search,

quick sort and

merge sort.

• It is a quick way to

simplify complex

problems.

Abstraction
• Represents real world entities using

computational elements.

• Excessive details are removed to simplify

the problem.

• This may then match a problem which

has previously been solved.

• Existing modules, functions or libraries

can then be used to solve the problem.

• Levels of abstraction divide a complex

problem into smaller parts.

• Different levels can be assigned to teams

whilst hiding details of other layers.

• This makes the project easier to manage.

• Abstraction by generalisation groups

together sections with similar

functionality.

• This allows segments to be coded

together, saving time.

Problem Solving Strategies
Backtracking
• Uses algorithms, often recursively.

• Builds a solution methodically.

• Based on paths which have been visited and found to be correct.

• The algorithm backtracks to the previous stage if an invalid path is

found.

Data Mining
• Identifies patterns or outliers in large data sets, often collected from

multiple sources.

• These data sets are known as big data.

• It spots correlations between data and other trends which might not

be easy to see.

• Can be used to make predictions about the future.

• A useful tool to assist in business and marketing.

Heuristics
• A non optimal or rule of thumb approach.

• Used to find an approximate solution to a problem.

• Used where the standard solution takes too long.

• Does not produce a 100% accurate or complete solution.

• Provides an estimate for intractable problems.

• Performance Modelling

• Mathematical method to test loads on systems.

• A cheaper and less time consuming method of testing applications.

• Used for safety critical systems where a trial run can’t be carried out.

Pipelining
• Modules are divided into individual tasks.

• Tasks are developed in parallel.

• Allows faster completion.

• The output of one process is often the input of another.

• Often used in RISC processors, which perform different parts of the

Fetch-Decode-Execute cycle at the same time.

Visualisation
• Presenting data using charts or graphs.

• Makes it easier for humans to understand.

• Allows trends or patterns to be more easily identified.

