

Unit 1.2 Software and Software Development (Page 1)

Operating Systems (OS)
• Provide an interface between the

user and computer

• Features include Memory

management, Resource

management, File management,

Input Output Management, Interrupt

management, Utility software,

Security, User interface

Scheduling
• The operating system schedule processor time between

running programs.

• These are known as jobs and held in a queue.

• Pre-emptive scheduling routines actively start and stop jobs

• Non pre-emptive routines start jobs then leave them to

complete

Round Robin Routine

• Each job is given a time slice of processor time to run in.

• When a job has used up it’s time slice it is returns to the start

of the queue and receives another.

• This repeats until the job is complete.

First come first served routine

• Jobs are processed in the order they entered the queue

Multilevel feedback queue routine

• Uses multiple queues, each with a different priority

Shortest job first routine

• The queue is ordered by the amount of processor time

needed.

• The shortest jobs are completed first.

Shortest time remaining routine

• The queue is ordered based on the time left to completion.

• Jobs with the least time needed to complete are finished first

 Advantages Disadvantages

Round

Robin

All jobs are

eventually

attended to.

Longer jobs take much

longer.

Takes no account of priority.

First Come

First

Served

Easy to

implement.

Takes no account of priority.

Multilevel

Feedback

Considers job

priority.

Tricky to implement

Shortest

Job First

Works well for

batch systems

Requires additional

processor time to order the

queue

Takes no account of priority.

Shortest

Time

remaining

Increased

throughput

Requires additional

processor time to order the

queue

Takes no account of priority.

Memory Management
• Computers often need more memory

than is available and so must efficiently

manage the available memory and share

it between programs.

Paging

• Memory is broken down into equal sized

parts called pages.

• Pages are swapped between main and

virtual memory.

Segmentation

• Memory is split up into segments.

• Segments can vary in size.

• These segments represent the logical

flow and structure of a program.

Virtual Memory

• Part of the hard drive can be used as

RAM.

• Access is slower than RAM.

• Paging is used to move sections which

are not in active use into virtual memory.

Interrupts
• A signal generated by hardware or software

to tell the processor it needs attention.

• Have different priorities.

• Stored with a priority queue in an interrupt

register.

Interrupt Service Routine (ISR)
• At the end of the fetch, decode, execute

cycle the interrupt register is checked.

• If there is an interrupt with a higher priority

than the current task:

o The contents of the registers are

transferred into a stack .

o The appropriate (ISR) is loaded into

RAM.

o A flag is set, noting that the ISR has

begun.

o The flag is reset when the ISR has

finished.

o This process repeats until no more

interrupts exist.

Types of Operating System
Distributed

• Runs across several devices

• Spreads task load across multiple

computers

Embedded

• Built to perform a specific small task

• Built for a specific device and

hardware

• Limited functionality

• Less resource intensive

Multi Tasking

• Allows multiple tasks to be completed

simultaneously

• Uses time slicing to switch between

applications

Multi User

• Several users can use a single

computer

• A scheduling algorithm allocates

processor time between jobs

Real Time

• Performs tasks within a guaranteed

time frame

• Used in time critical systems.

BIOS
• Basic Input Output System.

• Runs when a computer first turns on.

• Runs tests then loads the main OS

into memory.

• Power On Self Test (POST) makes

sure all hardware is connected and

functional

• Tests the CPU, Memory and external

devices.

Device Drivers
• Code which allows the OS to interact with hardware

• Specific to the OS and architecture type

Virtual Machines
• A software implementation of a virtual computer

• Intermediate code is halfway between machine code

and object code.

• It is independent of process architecture allowing it to

run across different systems.

• It takes longer to execute

• Virtual machines can be used to help protect from

malware, test software, or run software with different

versions or OS requirements.

Applications Software
• Used by an end user to perform a specific task.

• e.g. word processor or web browser

Systems software
• Manages computer resources to maintain

performance

• e.g. operating system or device driver.

Utility Software
• Has a specific function to maintain OS performance

• e.g. backup or compression software

 Open Source Closed Source

Provided along with the source

code.

No license required to use.

Needs a license to use.

Source code is not available.

Protected by Copyright

Advantages

Online, free, community support.

Many individuals will work on the

code meaning it is of high quality.

Free.

The company provides

support and documentation.

Professionally developed.

More secure.

Regular updates

Disadvantages

Not always well supported or

documented.

Variable quality code.

Less secure.

Code cannot be customised

to meet user needs.

License may restrict use.

More expensive.

Translators

• Covert source code into object code.

Compiler

• Translates code all in one go.

• Compilation process is longer.

• Produces platform specific code.

• Complied code can be run without a

translator.

Interpreter

• Translates and executes code line by line.

• Will error if a line contains an error.

• Slower to run than compiled code.

• Code is platform independent.

• Useful for testing.

Assembler

• Assembly code is platform specific, low

level code.

• Translates assembly code to machine

code.

• 1 line of assembly code = 1 line of

machine code.

Stages of Compilation
Lexical Analysis

• Comments and whitespace

removed

• Identifiers and keywords

replaced with tokens

• Token info stored in a

symbol table

Syntax Analysis

• Tokens checked against

language rules

• Flags syntax errors

• Abstract Syntax Tree

Produced

Code Abstraction

• Machine code produced

using Abstract Syntax Tree

Optimisation

• Reduces execution time

• Most time consuming part

• Removes redundant code.

Linkers
• Link external modules and libraries used in the code.

• Static linkers copy the library code directly into the

file, increasing its size.

• Dynamic linkers just add the addresses of the module

or library.

Loaders
• Provided by the OS to fetch the library or module from

the given location in memory

Libraries
• Libraries include pre compiled, error free, code which

can be used within other programs

• Common functions can quickly and easily be reused

across multiple programs

• Saves the time and effort associated with developing

and testing code to perform the same task over and

over again.

Ways to Address Memory
• Machine code comprises an operand and opcode.

• Operand is the value relating to the data on which the

instruction should be performed.

• Opcode holds the instruction and the addressing

mode.

• The addressing mode is how the operand should be

interpreted.

Addressing Modes

• Immediate Addressing – The operand is the value

itself and the instruction is performed on it.

• Direct Addressing – The operand provides the

address of the value the instruction should be

performed on.

• Indirect Addressing – The operand holds the address

of a register. The register holds the address of the

data.

• Indexed Addressing – An index register stores a

certain value. The address of the operand is found by

adding the index register and the operand.

Algorithms
• A set of instructions used to solve a

set problem.

• Inputs must be clearly defined.

• Must always produce a valid output.

• Must be able to handle invalid inputs.

• Must always reach a stopping

condition.

• Must be well-documented for

reference.

• Must be well-commented.

Unit 1.2 Software and Software Development (Page 2)

 Merits Drawbacks Uses

Waterfall

• Straightforward to

manage

• Clearly

documented

• Lack of flexibility

• No risk analysis

• Limited user

involvement

Static, low-risk

projects with

little user input.

Agile

• High quality code

• Flexible to

changing

requirements

• Regular user input

• Poor

documentation

Small to

medium

projects with

unclear initial

requirements.

Extreme

Programming

• High quality code

• Constant user

involvement

means high

usability

• High cost as two

people are

needed

• Teamwork is

essential

• User needs to be

present

Small to

medium

projects with

unclear initial

requirements

requiring

excellent

usability.

Spiral

• Thorough risk-

analysis

• Caters to

changing user

needs

• Prototypes

produced

throughout

• Expensive to hire

risk assessors

• Lack of focus on

code efficiency

• High costs due

to constant

prototyping

Large, risk-

intensive

projects with a

high budget.

Rapid Application

Development

• Caters to

changing

requirements

• Highly usable

finished product

• Focus on core

features, reducing

development time

• Poorer quality

documentation

• Fast pace and

late changes

may reduce

code quality

Small to

medium, low-

budget projects

with short time-

frames.

Development Methodologies
 Extreme Programming
•An agile model.

•Development team includes developers and user representatives.

•The system requirements are based on “user stories”.

•Produces highly usable software and high quality code.

•Programmers work no longer than 40 hours per week.

•Hard to produce high quality documentation.

 Rapid Application Development
•An iterative methodology.

•Uses partially functioning prototypes.

•Users trial a prototype.

•Focus groups gather user

requirements.

•This informs the next prototype.

•This cycle repeats.

•Used where user requirements are

unclear.

•Code may be inefficient.

Waterfall
•The stages are

completed in order.

•The clear structure

makes this model easy

to follow.

•Changes mean that all

stages must be revisited.

•User involvement is low.

Agile Methodologies
•A collection of mythologies.

•Aimed to improve flexibility.

•Adapt quickly to changing user

requirements.

•Sections of the program are

developed in parallel.

•Different stages of development can

be carried out simultaneously.

•A prototype is provided early and

improved in an iterative manner.

•Low focus on documentation.

•High focus on user satisfaction.

Spiral Programming
•Used for high risk

projects.

•Has four stages:

•Analyse requirements.

•Locate and mitigate

risks.

•Develop, test and

implement.

•Evaluate to inform the

next iteration.

•The project may be

terminated if it is

deemed too risky.

•Specialist risk assessors

are needed.

Programming Paradgims

Imperative

Code specifies clearly the actions to be
performed

Procedural

Widely used

Can be applied to a wide
range of problems

Written as a set of
instructions which are
carried out one by one

Easy to write

Object Orientated

Useful for problems which
can be broken down into

distinct components

Based around objects
which have attributes and

methods

Focus on reusability,
maintainability and ease of

updating

Declarative

States the desired result with the
language deciding how to acchieve it.
Users are unaware how the result is

obtained

Functional

Based around functions

Function calls can be
combined

Linked to mathematics

Logic

Rules and facts of the
problem are defined

Queries are used to find
answers to these problems

Procedural Programming
• Simple to implement.

• Applicable to many problems.

• Is not suited to every problem.

• Uses traditional data types and structures.

Structured Programming

• A subsection of procedural programming

• The flow is given four structures: sequence, selection,

iteration and recursion.

Assembly Language
• One level up from machine code.

• Low level language.

• Uses abbreviations for machine code called mnemonics.

• Processor specific.

• One line in assembly language equals one line in machine code.

Mnemonic Instruction Function

ADD Add
Add the value at the memory address to the
value in the Accumulator

SUB Subtract
Subtract the value at the memory address from
the value in the Accumulator

STA Store
Store the value in the Accumulator at the
memory address

LDA Load
Load the value at the memory address to the
Accumulator

INP Input
Allows the user to input a value to be held in
the Accumulator

OUT Output Prints the value in the Accumulator

HLT Halt Stops the program at that line

DAT Data
Creates a flag with a label at which data is
stored.

BRZ
Branch if
zero

Branches to an address if the value in the
Accumulator is zero. A conditional branch.

BRP
Branch if
positive

Branches to a given address if the value in the
Accumulator is positive. A conditional branch.

BRA
Branch
always

Branches to a given address no matter the value
in the Accumulator. An unconditional branch.

Attributes, Methods, Classes and Objects.
• Class – a template for an object. Defines the behaviour and state of

the object.

• State – defined by attributes giving the object’s properties.

• Behaviour – defined by the methods. Describes the action an object

can perform.

• Instantiation – using a class to create an object.

• Object - an instance of a class. Classes can create multiple objects.

• Setter – a method which sets the value of an attribute.

• Getter – a method which retrieves the value of an attribute.

• Constructor method – Allows a new object to be created from a

class. Every class must have one.

• Inheritance - process where a subclass will inherit all methods and

attributes of a superclass.

• Polymorphism – allows objects to behave differently depending on

their class.

• Overloading – avoiding a method by passing different parameters

to a method.

• Overriding – redefining a method to allow it to produce a different

output or function differently.

Object Orientated Programming
Advantages

• Reusable

• Code is more reliable

• Code is easy to maintain and update

• Classes can be reused, saving time and effort

Disadvantages

• Requires an alternative style of thinking

• Not suited to every problem

• Not best suited for small problems

