

Unit 1.4 Data Types, Data Structures and Algorithms

Binary Subtraction

• Use Two’s Complement.

• Use the same rules as adding

a negative number.

• Use binary addition with a

negative two’s complement

number.

Binary Addition

• 0 + 0 = 1

• 0 + 1 = 1

• 1 + 1 = 10

• 1 + 1 + 1 = 11

Positive Integers in Binary

• Each binary digit is called a bit

• Eight bits form a byte

• Four bits (half a byte) is called a nybble

• The most significant bit is furthest left

• The least significant bit is furthest right

Data Types

Integer

• A whole number

• May be positive, negative or 0

• Cannot have a fraction or

decimal point

• Often used for counting

objects

• e.g. 5, -1, 0, 10

Real

• Positive or negative number

• May have a decimal point

• Often used for measurements

• e.g. 5, -10, 100.556, 15.2

Character

• A single symbol

• May be a letter, number or

character

• Uppercase and lowercase

letters are different characters

• e.g. A, a, 5, M, ^, @

String

• A collection of characters

• Can store one or many strings

• Often used to contain text

• Leading 0s are not trimmed so

useful for storing phone

numbers

Boolean

• True or False only

Structures

Graphs

• Notes connected by edges or arcs.

• Directed graphs allow edges to be

traversed in one direction only.

• Undirected graphs allow edges to be

traversed in both directions.

• Weighted graphs attach a cost to each

arc.

• Implemented using an adjacency list or

adjacency matrix.

• Adjacency matrix - easy to add nodes

and to work with.

• Adjacency list - space efficient.

Trees

• Connected graphs with root and child

nodes.

• A note is an item in the tree.

• An edge connects two nodes together.

• A roof is a node with no incoming

nodes.

• A child is a node with incoming edges.

• A parent is a node with outgoing edges.

• A subtree is a section of a tree

consisting of a parent node with child

nodes.

• A leaf is a node with no child nodes.

• A binary tree is a tree where each node

has two or fewer children.

• Binary trees store information in a way

which is easy to search.

• They often store each node with a left

and right pointer.

 Data

Records

• A row in a file or table

• Widely used in databases

• Made up of fields

Lists

• A number of items

• Items can occur more than once

• Data can be of more than one data type

Tuples

• An ordered set of values

• Cannot be changed once initialised

• Initialised with regular rather than square

brackets

Arrays

• An ordered set of elements, each of the

same type.

• A 1D array is like a list.

• A 2D array is like a table.

• A 3D array is like a multi page spreadsheet.

• 2D arrays are searched first by the rows

and then the columns.

Linked Lists

• Dynamic data structure.

• Stores an ordered list.

• Contents need not be in contiguous data

locations.

• Items are called nodes.

• Each node contains a data field and a link

or pointer field.

• The data field contains the data itself.

• The pointer field contains the address of

the next item.

Boolean Operators

AND - two conditions must be met

for the statement to be true

Written as AND or .

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

OR - at least one condition must be

met for the statement to be true

Written as OR or +

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

NOT – inverts the result, e.g. NOT(A

AND B) will only be false when both

A and B are true

Written as NOT or ̅

A Q

1 0

0 1

XOR – Also know as Exclusive OR.

Works the same as an OR gate, but

will output 1 only if one or the other

and not both inputs are 1.

Written as XOR or ⊕

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

Trace Tables

• A method of recording the values used within an algorithm at

each stage of processing to help in troubleshooting

• Tests algorithms for logic errors which occur when the

algorithm is executed.

• Simulates the steps of algorithm.

• Each stage is executed individually allowing inputs, outputs,

variables, and processes to be checked for the correct value

at each stage.

• A great way to spot errors

X = 3
Y = 1
while X > 0
 Y = Y + 1
 X = X - 1
print(Y)

Stage X Y Output

1 3 1

2 2

3 2

4 3

5 1

6 4

7 0

8 4

Karnaugh Maps

• Used to simplify Boolean expressions

• Can be used for truth tables with

between two and four variables

• Values in columns and rows must be

written using grey code

• Columns and rows only differ by one

bit
1) Write the truth table as a Karnaugh

Map

2) Highlight all the 1s

3) Only groups of 1s with edged equal

to a power of 2 may be highlighted

4) Remove variables which change

within the highlighting

5) Keep variables which do not change

Combining and Manipulating

Boolean Operations

• Boolean operators can be

combined to form Boolean

equations

• This follows the same way

as combining standard

maths operators

• The equation can be

represented by a truth table

• Sometimes a long

expression can share a

truth table with a shorter

expression

• It is better to use the

shorter version.

Bitwise Manipulation

Shifts

• Shifts on binary numbers are called logical shifts.

• May be a logical shift left or logical shift right.

• Move all the bits of the number a specific number

of places left or right.

• Involves adding a number of zeros at the beginning

or end.

• This gives a multiplication for left shifts and division

for right shifts by two to the power of the number of

places shifted.

• Moving one place will double or halve the number.

Masks

• Combines binary numbers with a logic gate such as

AND or XOR.

• May multiply or otherwise change the involved

numbers.

Normalisation

• Maximises the precision

in any number of bits.

• Adjust the mantissa so

that it begins with 01 for

positive numbers and 10

for negative numbers.

Simplifying Boolean Algebra

De Morgan’s Laws

Distribution

Association

Commutation

Double Negation

Unit 1.4 Data Types, Data Structures and Algorithms
Character Sets

• A collection of codes and their corresponding

characters.

ASCII

• American standard code for information interchange

• Older character set

• Uses 7 bits representing 27 (128) characters

• Insufficient characters to represent multiple

languages

Unicode

• Developed in response to ASCIIs limited characters

• Varying number of bits allows over 1 million

characters

• Many characters yet to be used

• Includes different symbols and emojis

Additional and Subtraction of Floating Point

Numbers

Addition

• The exponent must be the same

• Add the mantissas

• Normalise if needed

Subtraction

• The exponents must be the same

• Covert to two’s complement then add

• Use binary addition on the mantissas

• Normalise if needed

Floating Point Numbers

• Similar to scientific

notation

• Numbers are split into

Mantissa and Exponent

• The mantissa has the

binary point after the most

significant bit

• Then convert the

exponent to decimal

• Move the binary point

according to the exponent

Traversing Data Structures
Pre-order Traversal

1. Root node

2. Left subtree

3. Right subtree

In-order Traversal

1. Left subtree

2. Root node

3. Right subtree

Post-order Traversal

1. Left subtree

2. Right subtree

3. Root node

List and Queue Operations

List Operations

• isEmpty() Checks if the list is empty

• append(value) Adds a new value to

the end of the list

• remove(value) Removes the value

the first time it occurs

• in the list

• search(value) Searches for a value

in the list.

• length() Returns the length of the list

• index(value) Returns the position of

the item

• insert(position, value) Inserts a value

at a given position

• pop() Returns and removes the last

item in the

• list

• pop(position) Returns and removes

the item at the given

• position

Queue Operations

• enQueue(value) Adds a new item to

the end of the queue

• isEmpty() Checks if the queue if

empty

• isFull() Checks if the queue is full

Logic Circuits - D-Type Flip Flops

• Stores the value of one bit.

• Has a clock, two inputs and a control signal.

• The clock is a regular pulse from the CPU.

• The clock is used to coordinate the computer’s components.

• A clock pulse has edges which either rise or fall.

• The output can only change at a rising edge.

• Used four NAND gates.

• Updates the value in Q to the value in D whenever the clock

rises.

• Q is the stored value

Logic Circuits - Adders

• Adds together the number of TRUE inputs.

• Outputs this number in binary.

Half Adder

• Has two inputs, A and B.

• Has two outputs, SUM and CARRY.

• Has two logic gates, AND and XOR.

• When A and B are FALSE both outputs are

FALSE.

• When one of A or B is true, SUM is TRUE.

• When both inputs are TRUE, CARRY is TRUE.

A B C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Full Adder

• Like a half adder but with a third input, CARRY

IN.

• Formed from two XOR gates, two AND gates

and an OR gate.

• May be chained together to produce a Ripple

Adder with many inputs.

A B C in C out Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

 Hexadecimal

• Base 16.

• Characters 0-9 are used as usual.

• A-F are used instead of 10-15.

• Place values begin with 1 and increase in powers of

16

Converting Hexadecimal to Binary

• Convert each digit to a decimal number

• Convert these to a binary nybble

• Join the nybbles into a single binary number

Converting Hexadecimal to Decimal

• Convert to binary

• Convert the binary to decimal

Stacks and Queues

Stacks

• Last in first out

• Items can only be

added or removed

from the top

• Used for back or

undo buttons

• Can be dynamic or

static structure

Queues

• First in first out

data structure

• Items are added at

the beginning and

removed at the end

• Used in printers

and keyboards

• Linear queue with

items added into

the next space

• Space inefficient

• Uses pointers at

the front and back

• Circular queues

have a rear pointer

that can loop back

to the beginning to

use empty space.

Stack and Queue

Operations

Stacks

• isEmpty() - Checks if the

stack is empty

• push(value) - Adds a new

value to the top of the

stack

• peek() - Returns the top

value of the stack

• pop() - Returns and

removes the top value of

the stack

• size() - Returns the size of

the stack

• isFull() - Checks if the

stack is full

Queues

• enQueue(value) - Adds a

new item at the end of the

queue

• deQueue() - Removes the

item at the end of the

queue

• isEmpty() - Checks if the

queue if empty

• isFull() - Checks if the

queue is full

