

Path Finding Algorithms

Searching Algorithms
• Used to locate an

element within a

data structure.

• Many different

forms exist.

• Each is suited to

different purposes

and data structures.

Unit 2.3 Algorithms
Sorting Algorithms

• Places elements into a logical order.

• Usually numerical or alphabetical.

• Usually in ascending order.

• Can be set to work in descending order.

Designing Algorithms
• The priority for an algorithm is to

achieve the given task.

• The second priority is to reduce time

and space complexity.

• There may be a conflict between

space and time complexity and the

requirements and situation for an

algorithm will dictate which is more

important.

• To reduce space complexity, make

as many changes on the original data

as possible. Do not create copies.

• To reduce time complexity, reduce

the number of loops.

Space Complexity
• The amount of storage

space the algorithm takes

up.

• Does not have a defined

notation.

• Copying data increases

the storage used.

• Storage space is

expensive so this should

be avoided.

Big-O Notation
• 0(1) - Consistent time complexity - The amount

of time is not affected by the number of inputs.

• 0(n) - Linear time complexity - The amount of

time is directly proportional to the number of

inputs.

• 0(nn) - Polynomial time complexity - The

amount of time is directly proportional to the

number of inputs to the power of n.

• 0(2n) - Exponential time complexity - The

amount of time will double with every additional

input.

• 0(log n) - Logarithmic time complexity - The

amount of time will increase at a smaller rate as

the number of inputs increases.

Time Complexity
• How much time an algorithm

needs to solve a problem.

• Measured using big-o notation.

• Shows the amount of time taken

relative to the number of inputs.

• Allows the required time to be

predicted.

Algorithms
• A set of instructions used

to solve a set problem.

• Inputs must be clearly

defined.

• Must always produce a

valid output.

• Must be able to handle

invalid inputs.

• Must always reach a

stopping condition.

• Must be well-documented

for reference.

• Must be well-commented.

Queues
• FIFO (First in first out)

• Often an array.

• The front pointer marks the position of the first

element.

• The back pointer marks the position of the next

available space.

Queue Functions
• Check size size()

• Check if empty isEmpty()

• Return top element (but don’t remove) peek()

• Add to the queue enqueue(element)

• Remove element at the front of the queue and

return it dequeue()

Stacks
• FILO (First In Last Out)

• Often an array.

• Uses a single pointer (the top

pointer) to track the top of the

stack.

• The top pointer is initialised at -1,

with the first element being 0, the

second 1 and so on.

Stack Functions
• Check size size()

• Check if empty isEmpty()

• Return top element (but don’t

remove) peek()

• Add to the stack push(element)

• Remove top element from the

stack and return it pop()

Bubble Sort
• Compares elements and swaps as needed.

• Compares element 1 to element 2.

• If they are in the wrong order, they are

swapped.

• This process is repeated with 2 and 3, 3

and 4, and so on until the end of the list is

reached.

• This process must be repeated as many

times as there are elements in the array.

• Each repeat is referred to as a “pass”.

• Can be modified to improve efficiency by

using a flag to indicate if a swap has

occurred during the pass.

• If no swaps are made during a pass the list

must be in the correct order and so the

algorithm stops.

• A slow algorithm.

• Time complexity of 0(n2)

Insertion Sort
• Places elements

into a sorted list.

• Starts at element 2

and compares it

with the element

directly to its left.

• When compared,

elements are

inserted into the

correct position in

the list.

• This repeats until

the last element is

inserted into the

correct position.

• In the 1st iteration 1

element is sorted,

in the 2nd iteration

2 are sorted etc.

• Time complexity of

0(n2)

Binary Search
• Only works with sorted data.

• Finds the middle element, then decides on

which side of the data the requested

element is.

• The unneeded half is discarded and the

process repeats until either the requested

element is found or it is determined that the

requested element does not exist.

• A very efficient algorithm.

• Time Complexity is 0(log n)

Linear Search
• Most basic search

algorithm.

• Works through the elements

one at a time until the

requested element is found.

• Does not need data to be

sorted.

• Easy to implement.

• Not very efficient.

• Time Complexity is 0(n)

Logarithms
• The inverse of an exponential.

• An operation which determines how

many times a certain number is multiplied

by itself to reach another number.

• x y = log(x)

• 1 (20) 0

• 8 (23) 3

• 1024 (210) 10

•

Merge Sort
• A divide and conquer algorithm.

• Formed of a Merge and MergeSort

function.

• MergeSort divides the input into

two parts.

• It then recursively calls MergeSort

on each part until their length is 1.

• Merge is called.

• Merge puts the groups of elements

back together in a sorted order.

• You will not be asked about the

detailed implementation of this

algorithm but do need to know how

it works.

• It is more efficient than bubble and

merge sort.

• It has a worst case time of O(n log

n)

Quick Sort
• Selects an element

and divides the input

around it.

• Often selects the

central element, which

is known as the pivot.

• Elements smaller than

the pivot are listed to

its left.

• Larger elements are

listed to its right.

• The process is

repeated recursively.

• Slow.

• Time complexity of

O(n2)

Linked Lists
• Contains several nodes.

• Each node has a pointer to the

next item in the list.

• For node N, N.next will access

the next item.

• The first node is the head.

• The last node is the tail.

• Searched using a linear search.

Trees
• Consists of nodes and edges.

• Cannot contain cycles.

• Edges are not directed.

• Can be traversed using depth first or

breadth first.

• Both methods can be implemented

recursively.

Depth First (Post Order)

Traversal
• Moves as far as possible through the

tree before backtracking.

• Uses a stack.

• Moves to the left child node

wherever possible.

• Will use the right child node if no left

child node exists.

• If there are no child nodes, the

current node is used.

• the algorithm then backtracks to the

next node moving right.

Breadth First
• Starts from the left.

• Visits all children of the starting

node.

• Then visits all nodes directly

connected to each of these nodes in

turn.

• Continues until all nodes have been

visited.

• Uses a queue.

Dijkstra’s Algorithm
• Finds the shortest path between

two points.

• The problem is depicted as a

weighted graph.

• Nodes represent the items in the

scenario such as places.

• Edges connect the nodes

together.

• Each edge has a cost.

• The algorithm will calculate the

best way, known as the least cost

path, between two nodes.

A* Algorithm
• Provides a faster solution than

Dijkstra’s Algorithm to find the

shortest path between two nodes.

• Uses a heuristic element to decide

which node to consider when

choosing a path.

• Unlike Dijkstra’s Algorithm, A* only

looks for the shortest path

between two nodes, instead of the

shortest path from the start node

to all other nodes.

