Algorithms

¢ A set of instructions used
to solve a set problem.

¢ Inputs must be clearly
defined.

e Must always produce a
valid output.

¢ Must be able to handle
invalid inputs.

o Must always reach a
stopping condition.

o Must be well-documented
for reference.

o Must be well-commented.

Designing Algorithms

e The priority for an algorithm is to
achieve the given task.

e The second priority is to reduce time
and space complexity.

¢ There may be a conflict between
space and time complexity and the
requirements and situation for an
algorithm will dictate which is more
important.

e To reduce space complexity, make
as many changes on the original data
as possible. Do not create copies.

¢ To reduce time complexity, reduce
the number of loops.

Sorting Algorithms
* Places elements into a logical order.
e Usually numerical or alphabetical.
o Usually in ascending order.
o Can be set to work in descending order.

Bubble Sort
e Compares elements and swaps as needed.
e Compares element 1 to element 2.
o If they are in the wrong order, they are

Insertion Sort
¢ Places elements
into a sorted list.
e Starts at element 2
and compares it
with the element

swapped.

e This process is repeated with 2 and 3, 3
and 4, and so on until the end of the list is

directly to its left.
¢ When compared,
elements are

reached.

¢ This process must be repeated as many
times as there are elements in the array.

e Each repeat is referred to as a “pass”.

¢ Can be modified to improve efficiency by
using a flag to indicate if a swap has
occurred during the pass.

o If no swaps are made during a pass the list
must be in the correct order and so the
algorithm stops.

¢ A slow algorithm.

e Time complexity of 0(n2)

Merge Sort

e A divide and conquer algorithm.

e Formed of a Merge and MergeSort
function.

e MergeSort divides the input into
two parts.

e It then recursively calls MergeSort
on each part until their length is 1.

e Merge is called.

e Merge puts the groups of elements
back together in a sorted order.

¢ You will not be asked about the
detailed implementation of this

algorithm but do need to know how
it works.

It is more efficient than bubble and
merge sort.

It has a worst case time of O(n log
n)

inserted into the
correct position in
the list.

¢ This repeats until
the last element is
inserted into the
correct position.

¢ In the 1st iteration 1
element is sorted,
in the 2nd iteration
2 are sorted etc.

¢ Time complexity of
NIN2\

Quick Sort
Selects an element
and divides the input
around it.

Often selects the
central element, which
is known as the pivot.
Elements smaller than
the pivot are listed to
its left.

Larger elements are
listed to its right.

The process is
repeated recursively.
Slow.

Time complexity of
0O(n2)

Queues

¢ FIFO (First in first out)

o Often an array.

¢ The front pointer marks the position of the first
element.

¢ The back pointer marks the position of the next
available space.

Queue Functions

e Check size size ()

e Check if empty isEmpty ()

¢ Return top element (but don’t remove) peek ()

e Add to the queue enqueue (element)

¢ Remove element at the front of the queue and
return it dequeue ()

Unit 2.3 Algorithms

Stacks

¢ FILO (First In Last Out)

o Often an array.

e Uses a single pointer (the top
pointer) to track the top of the
stack.

¢ The top pointer is initialised at -1,
with the first element being 0, the
second 1 and so on.

Stack Functions

e Check size size ()

o Check if empty isEmpty ()

o Return top element (but don’t
remove) peek ()

¢ Add to the stack push (element)

e Remove top element from the
stack and return it pop ()

Space Complexity

e The amount of storage
space the algorithm takes
up.

¢ Does not have a defined
notation.

e Copying data increases
the storage used.

o Storage space is
expensive so this should
be avoided.

data structure.
¢ Many different
forms exist.

e Used to locate an
element within a

e Each is suited to
different purposes
and data structures.

Big-O Notation

¢ 0(1) - Consistent time complexity - The amount
of time is not affected by the number of inputs.

¢ 0(n) - Linear time complexity - The amount of
time is directly proportional to the number of
inputs.

¢ 0(nn) - Polynomial time complexity - The
amount of time is directly proportional to the
number of inputs to the power of n.

¢ 0(2n) - Exponential time complexity - The
amount of time will double with every additional
input.

¢ O(log n) - Logarithmic time complexity - The
amount of time will increase at a smaller rate as
the number of inputs increases.

Searching Algorithms

Linear Search

e Most basic search

algorithm.

e Works through the elements

one at a time until the
requested element is found.

¢ Does not need data to be

sorted.

e Easy to implement.
¢ Not very efficient.
e Time Complexity is 0(n)

Binary Search

¢ Only works with sorted data.

¢ Finds the middle element, then decides on
which side of the data the requested
element is.

e The unneeded half is discarded and the
process repeats until either the requested
element is found or it is determined that the
requested element does not exist.

o A very efficient algorithm.

e Time Complexity is 0(log n)

Linked Lists
Contains several nodes.
Each node has a pointer to the
next item in the list.
For node N, N.next will access
the next item.
The first node is the head.
The last node is the tail.
Searched using a linear search.

Time Complexity
e How much time an algorithm
needs to solve a problem.
¢ Measured using big-o notation.
e Shows the amount of time taken
relative to the number of inputs.
¢ Allows the required time to be
predicted.

Logarithms

e The inverse of an exponential.

¢ An operation which determines how
many times a certain number is multiplied
by itself to reach another number.

e Xy = log(x)

e1(20)0

¢8(23)3

¢ 1024 (210) 10

Path Finding Algorithms

Dijkstra’s Algorithm

¢ Finds the shortest path between
two points.

e The problem is depicted as a
weighted graph.

¢ Nodes represent the items in the
scenario such as places.

¢ Edges connect the nodes
together.

e Each edge has a cost.

¢ The algorithm will calculate the
best way, known as the least cost
path, between two nodes.

A* Algorithm

¢ Provides a faster solution than
Dijkstra’s Algorithm to find the
shortest path between two nodes.

e Uses a heuristic element to decide
which node to consider when
choosing a path.

¢ Unlike Dijkstra’s Algorithm, A* only
looks for the shortest path
between two nodes, instead of the
shortest path from the start node
to all other nodes.

Trees

¢ Consists of nodes and edges.

¢ Cannot contain cycles.

¢ Edges are not directed.

¢ Can be traversed using depth first or
breadth first.

¢ Both methods can be implemented
recursively.

Depth First (Post Order)

Traversal

e Moves as far as possible through the
tree before backtracking.

¢ Uses a stack.

¢ Moves to the left child node
wherever possible.

o Will use the right child node if no left
child node exists.

o |f there are no child nodes, the
current node is used.

o the algorithm then backtracks to the
next node moving right.

Breadth First

o Starts from the left.

o Visits all children of the starting
node.

¢ Then visits all nodes directly
connected to each of these nodes in
turn.

¢ Continues until all nodes have been
visited.



