

Knowledge Organiser: Unit 1 Biomolecules (1.1-1.4)

- 1.1 Monomers and polymers1.2 Carbohydrates1.3 Lipids
- 1.4 Proteins

For every 1 hour A Level Biology lesson you are expected to spend at least 1 hour independently reviewing the subject content. The following resources should be referred to regularly to support your independent work.

You have been provided with a printed copy of the full subject specification (also available on the AQA website <u>https://www.aqa.org.uk/subjects/science/as-and-a-level/biology-7401-7402/specification-at-a-glance</u>). Use this to follow the learning in lessons...track your progress and be aware of what is still to come.

kerboodle

Use the textbook on <u>www.kerboodle.com</u> after every lesson to develop your understanding. Read the relevant pages, add detail to your class notes and complete the summary tasks. Create your own summary notes/flashcards for future use in the run up to exams.

Unit 1 Biomolecules pg4-55 Monomers and polymers (pg4-7) Carbohydrates (pg8-15) Lipids (pg16-18) Proteins (structure pg19-22, enzymes pg23-33)

Use regularly between lessons to review basic content and to become more familiar with key terminology. <u>https://senecalearning.com/en-GB/</u>

Access detailed revision notes, key definitions, flash cards, past paper questions and mark schemes. <u>https://www.physicsandmathstutor.com/biology-revision/a-level-aqa/</u>

As an A Level student you are expected to take a proactive approach to your studies; arrive to lessons fully equipped and prepared for what you will be learning about (read ahead in the specification/textbook), focus and participate in lessons, ask for help/clarification when you are unsure and spend time after the lesson consolidating/embedding new learning.

1.1 Monomers and polymers

Monomers and polymers

- Monomer: small, single molecule, many of which can be joined together to form a polymer
- Polymer: large molecule made up of many similar / identical monomers joined together

Condensation and hydrolysis reactions

A condensation reaction:

- Joins 2 molecules together
- Eliminates a water molecule
- Forms a chemical bond e.g. glycosidic bond

A hydrolysis reaction:

- Separates 2 molecules
- Requires addition of a water molecule
- Breaks a chemical bond

Exam tip: to get full marks for a diagram of a condensation or hydrolysis reaction, you need to include the H_2O molecule that is added or removed

1.2 Carbohydrates

Carbohydrates can be classified into 3 groups based on how many units they are made of (1, 2 or many)

Monosaccharides and disaccharides

Monosaccharides and disaccharides are simple carbohydrates (sugars)

Monosaccharides

- Monosaccharides are the monomers from which larger carbohydrates are made
- E.g. glucose, fructose and galactose

Disaccharides

- Glucose + glucose = maltose
- Glucose + fructose = sucrose
- Glucose + galactose = lactose

Structure of glucose

- 6 carbon atoms, labelled in red on diagram (a)
- Learn how to draw glucose in as much detail as diagram (b)

A condensation reaction between 2 monosaccharides forms a glycosidic bond

Isomers of glucose: α - and β -glucose

- **Isomer**: same molecular formula but differently arranged atoms
- Difference in structures: OH group is below C1 on α-glucose but above C1 in β-glucose

Polysaccharides

Examples: starch, glycogen and cellulose

Glycogen

- Function: energy store in animal cells
- Structure: polysaccharide of α-glucose with C1-C4 and C1-C6 glycosidic bonds so branched

Structure of glycogen related to its function:

- ✓ Branched; can be rapidly hydrolysed to release glucose for respiration to provide energy
- ✓ Large polysaccharide molecule; can't leave cell
- ✓ Insoluble in water; water potential of cell not affected i.e. no osmotic effect

Starch

- Function: energy store in plant cells
- Structure: polysaccharide of α-glucose. Mixture of amylose and amylopectin; amylose has C1-C4 glycosidic bonds so is unbranched, while amylopectin has C1-C4 and C1-C6 glycosidic bonds so is branched

Structure of starch related to its function (amylose):

- ✓ Helical; compact for storage in cell
- ✓ Large polysaccharide molecule; can't leave cell
- ✓ Insoluble in water; water potential of cell not affected i.e. no osmotic effect

Cellulose

- Function: provides strength and structural support to plant cell walls
- Structure: polysaccharide of b-glucose. Alternate 180 degree rotation. C1-C4 glycosidic bonds so is unbranched. Chains of glucose molecules are arranged in a linear pattern

Structure related to function:

- Every other beta-glucose molecule is inverted in a long, straight, unbranched chain
- Many hydrogen bonds link parallel strands (crosslinks) to form micro fibrils (strong fibres)
- ✓ H bonds are strong in high numbers
- Provides strength and structural support to plant cell walls

Amylopectin

Biochemical tests for carbohydrates

Benedict's test for sugars

Reducing sugar	Non-reducing sugars
All monosaccharides e.g. glucose	No monosaccharides
• Most disaccharides e.g. maltose / lactose	Some disaccharides e.g. sucrose
 Benedict's test for reducing sugars 1. Add benedict's reagent (blue) to sample 2. Heat in a boiling water bath 3. Positive = green / yellow / orange / red precipitate (reducing sugar present) 	
Benedict's test can also be used to test for non-	Negative Increasing amounts of reducing sugar

reducing sugars, indirectly:

Benedict's test for non-reducing sugars

- 1. Add a few drops of dilute hydrochloric acid (hydrolyse sugar into its constituent reducing sugars)
- 2. Heat in a boiling water bath
- 3. Neutralise with sodium bicarbonate
- 4. Add Benedict's reagent and heat again
- 5. Non-reducing sugar present = green / yellow / orange / red precipitate

Determining glucose concentration

- 1. Produce a dilution series of glucose solutions of known concentrations
- 2. Perform a Benedict's test on each sample
 - Heat with Benedict's solution
 - Use same amount of solution for each test
 - Use excess Benedict's
 - Remove precipitate by filtering
- 3. Using a colorimeter, measure the absorbance of each sample and plot a calibration curve
 - Calibrate colorimeter using unreacted Benedict's
 - Use a red filter
 - Less absorbance of filtrate = more sugar present (as removed precipitate)
 - Plot absorbance against glucose concentration
- 4. Repeat with unknown sample (find absorbance) and use graph to determine glucose concentration

lodine test for starch

- 1. Add iodine dissolved in potassium iodide to solution and shake/stir
- 2. Blue-black colour = starch present

1.3 Lipids

Triglycerides and phospholipids are 2 groups of lipids

Triglycerides

Triglycerides are formed by the condensation of **1 molecule of glycerol and 3 fatty acids**

A condensation reaction between glycerol and a fatty acid (RCOOH) forms an **ester bond**

Properties related to structure

Triglycerides: energy storage molecules

- High ratio of C-H bonds to C atoms in hydrocarbon tail
 so release more energy than the same mass of carbohydrates
- Insoluble in water (clump together as droplets)
 so no effect on water potential of cell

also sometimes represented as 'R'

Zig zags represent a simplified hydrocarbon tail,

Phospholipids

In phospholipids, one of the fatty acids of a triglyceride is substituted by a phosphate-containing group

Properties related to structure

Phospholipids: form bilayer in cell membrane, allowing diffusion of non-polar / small molecules

- Phosphate heads are polar / hydrophilic
 so are attracted to water → orient to aqueous environment either side of membrane
- Fatty acid tails are non-polar / hydrophobic
 so are repelled by water → orient to interior of membrane → repels polar / charged molecules

Saturated & unsaturated fatty acids

- **Saturated:** no C=C double bonds in hydrocarbon chain; all carbons fully saturated with hydrogen
- Unsaturated: one or more C=C double bonds in hydrocarbon chain

Emulsion test for lipids

- 1. Add ethanol and shake (dissolves lipids)
- 2. Then add water
- 3. Positive: milky/cloudy white emulsion

To get the marks in the exam, you must state steps 1 and 2 in the correct order

4.1 General properties of proteins

Amino acids, dipeptides and polypeptides General structure of an amino acid Variable side chain / group Amino acids are the monomers from which proteins are made R 20 amino acids are common in all organisms -COOL differ only in their side group Amine group Carboxyl group A condensation reaction between 2 amino acids forms a peptide bond Amino acid Amino acid R 0 Ш — N ОН Н· Dipeptide – 2 amino acids joined - он C Polypeptide - many amino acids joined Dipeptide R 0 A functional protein may contain one or more polypeptides Ш

Structural levels of proteins and the role of bonds

Primary (1°) structure

• Sequence of amino acids in a polypeptide chain

Secondary (2°) structure

- Hydrogen bonding between amino acids (between carbonyl O of one and amino H of another)
- Causes polypeptide chain to fold into a repeating pattern e.g. alpha helix or beta pleated sheet

Tertiary (3°) structure

- Overall 3D structure of a polypeptide held together by interactions between amino acid side chains:
- Ionic bonds / disulfide bridges / hydrogen bonds

Quaternary (4°) structure

- Some proteins are made of 2+ polypeptide chains
- Held together by more hydrogen, ionic and disulfide bonds

Peptide H

bond

- ОН

Proteins have a variety of functions within all living organisms. You need to be able to relate the structure of proteins to properties of proteins named throughout the specification e.g. enzymes / antibodies

Ν

Н

Biuret test for protein

- Add biuret solution: sodium hydroxide + copper (II) sulfate
- Protein present: purple colour (negative = stays blue)
- Detects presence of peptide bonds

4.2 Many proteins are enzymes

Introduction to enzymes

- Each enzyme **lowers the activation energy** of the reaction it catalyses (see diagram) → speed up rate of reaction
- Enzymes are **biological catalysts**; they catalyse a wide range of intracellular (within cells) and extracellular (outside cells) reactions that determine structures and functions from cellular to whole-organism level.

Models of enzyme action

Lock and Key model	Induced Fit model
Old, outdated	Recent, accepted
 Active site is a fixed shape / doesn't change shape; it is complementary to one substrate After a successful collision, an enzyme- substrate complex forms leading to a reaction 	 Before reaction, enzyme active site not completely complementary to substrate / doesn't fit substrate Active site shape changes as substrate binds and enzyme-substrate complex forms This stresses / distorts bonds in substrate leading to a reaction Active site Active site Substrate Enzyme-substrate Complex Comp

The specificity of enzymes

- Enzymes have a specific shaped tertiary structure and active site
 - Sequence of amino acids (primary structure) determines tertiary structure
- Active site is **complementary** to a specific substrate
- Only this substrate can bind to the active site, inducing fit and forming an enzyme-substrate complex

Factors affecting rate of enzyme-controlled reactions

Enzyme concentration

- Increasing enzyme conc. \rightarrow rate of reaction increases
 - Enzyme conc. = limiting factor (substrate in excess)
 - More enzymes → more available active sites
 - More successful E-S collisions and E-S complexes
- At a certain point, rate of reaction **plateaus**
 - Substrate conc. = limiting factor (all substrates in use)

Substrate concentration

- Increasing substrate conc. \rightarrow rate of reaction increases
 - Substrate concentration = limiting factor (too few enzyme molecules to occupy all active sites)
 - More successful E-S collisions and E-S complexes
- At a certain point, rate of reaction **plateaus**
 - Enzyme conc. = limiting factor (all active sites saturated; excess substrate)

Temperature

- Increasing temp. up to optimum \rightarrow rate of reaction increases
 - Increase in kinetic energy
 - More successful E-S collisions and E-S complexes
- Increasing temp. above **optimum** \rightarrow rate of reaction falls
 - Enzymes denature; tertiary structure and active site change shape (hydrogen / ionic bonds break)
 - Fewer E-S collisions and E-S complexes (substrate no longer binds to active site)
 - Rate of reaction **0** when **all** enzymes denatured

Substrate concentration

рΗ

- pH above / below optimum pH \rightarrow rate of reaction decreases
 - Enzymes denature; tertiary structure and active site change shape (hydrogen and ionic bonds break)
 - Complementary substrate can no longer bind to active site
 - Fewer E-S collisions and E-S complexes
- pH = log₁₀ [H⁺]

Concentration of competitive and non-competitive inhibitors

Competitive inhibitors decrease rate of reaction

- Similar shape to substrate
- Competes for / binds to / blocks active site so substrates can't bind
- Fewer E-S complexes
- Increasing substrate conc. reduces effect of inhibitor (level of inhibition dependent on relative concs. of substrate and inhibitor)

Non-competitive inhibitors decrease rate of reaction

- Binds to site away from the active site (allosteric site)
- Enzyme tertiary structure / active site change shape so substrate can't bind to active site
- Fewer E-S complexes
- Increasing substrate concentration has no effect on rate of reaction as causes permanent change to active site

