EDULITO Computational Logic

Topic Tests

Photocopiable Resources

Terms and Conditions of Use

Your school has permission to copy this resource as many times as you require and to use it as you wish within your school/organisation.

You do not have permission to distribute it as a paper or electronic document to other schools or organisations.

Any questions? Email: edulitolearn@gmail.com

© 2016 Edulito and its licensors. All rights reserved.

2 (a) A NOT gate has just one input. The output of the circuit will be the opposite of the input. Complete the table below to show what happens to the inputs. [2]

Input	Output
1	
0	

2(b) An **AND** gate can be used on a gate with two inputs. Complete the truth table below to show the output from an AND Gate. [4]

Input A	Input B	Output
0	0	
0	1	
1	0	
1	1	

2(c) The **OR** gate has two inputs. Complete the truth table below to show the output from an AND Gate. [4]

Input A	Input B	Output
0	0	
0	1	
1	0	
1	1	

3 (a) Look at this Venn diagram, which shows the number of children who take part in two sports in year 7 and then fill in the gaps below. [3]

(i) There were children who took part in football AND swimming.

(ii) There were children who took part in football but **NOT** swimming.

(iii) There were 15 children who took part in swimming football.

(iv) There were children who took part in football OR swimming.

3 (b) Determine the output for each of the examples below, by assigning the following values to the variables.

x=10 y=20 z=15

Question	Pseudocode	Output
(i)	if x>y AND z>y then	
	print("true")	
	else	
	print("false")	
	endif	

(ii)	if x==y OR z <y th="" then<=""><th></th></y>	
	print("true")	
	else	
	print("false")	
	endif	
(iii)	if NOT(x>y) OR x==y/2 then	
	print("true")	
	else	
	print("false")	
	endif	

4(a) A jewellery shop has an alarm system that they are turn on at night that has a sensor on the door and a sensor on the window. The alarm will go off if someone tries to enter the shop via the door OR the window.

Complete the truth table below to show how Boolean logic is used. [4]

Door opened	Window opened	Alarm sounds
Т		
Т		
F		
F		

4(b) Create a truth table for the following pseudocode. [4]

print ("true")

endif

Х	Y	NOT(X OR Y)
Т	Т	
F	Т	
Т	F	
F	F	

5 (a) A farmer grows her tomatoes in poly-tunnels. She has decided to set up an automatic watering system.

At the entrance to the poly-tunnels there is a light sensor, and inside the poly-tunnel within the soil there is a moisture sensor. The farmer only wants the watering system to turn on at night and only when the soil is dry. The farmer chooses to use two **NOT** gates and one **AND** gate.

Draw a diagram to show the logic gate structure used in the poly-tunnel. [2]

5 (b) (i) A logic circuit can be written as **Q** = (NOT A) OR B: Draw the logic gate in the space below. [3]

5(b)(ii) Complete the truth table for the logic gate structure shown in 5(b)(i). [4]

Inp	Output	
Α	В	Q
0	0	
0	1	
1	0	
1	1	

6 (a) MOD and DIV are arithmetic operators. Explain the difference between them. [2]

	 ••••••	
••••••	 •	 •••••

6(b) What would be the output produced in each of the examples of pseudocode shown below? [8]

	Pseudocode	Output
(i)	a=7	
	b=14	
	c=12	
	print(a*b) +(c*a)	
(ii)	a=7	
	b=20	
	c=12	
	print(a+c+(a^4)) +(b*a)	
(iii)	a=6	
	b=14	
	c=12	
	if a<=b then	
	print(a*b) +(c/a)	
	else	
	print(a+b)-c^6	
	endif	
(iv)	a=5	
	b=14	
	c=12	
	if a>=b OR c/2>=7 then	
	print(cMODa)	
	else	
	print(cDIVa)	

		Topic	Test - Comp	- Mark Scheme		
Question			Answer		Additional Guidance	Mark
1 a	Binary is th two numbe	e base 2 ers 1 and	number system · 0 [1]	– it consists of the		2
1 b	Binary num work as the a high-volt low voltage Patterns of [1]	nbers are e number age signa e signal. [high and	required for con 1 can be repres I and the 0 can b 1] I low voltage pro		2	
2 a	Output 0 [1] 1 [1]					2
2 b	Output 0[1] 0[1] 0[1] 1[1]					4
2 c	Output 0[1] 1[1] 1[1] 1[1]					4
3 a	(i) 8 [1] (ii) 22 [1] (iii) but NO (iv) 45 [1]	T [1]				4
3 b	(i) false [1] (ii) true[1] (iii) true [1]	l				3
4 a	Door opened T T F F	Windo opene T F T	Alarm sounds T [1] T [1] T [1] F [1]			4
4 b	X T F T	Y T T F	NOT(X OR Y) F [1] F [1] F [1]			4

GCSE Computer Science (9-1) Computational Logic - Topic Test

	F	F	T [1]			
5 a	A - B - Correct use of Correct use o	>)		Q		2
5 b i	A Correct use o No NOT gate OR gate in co	of NOT ga for B. [1]) te for A. [1] ation. [1])Q		3
5 b ii	Ir	nput	Output			4
	A	В	Q	-		
	A 0	B	Q 1 [1]	-		
	A 0 0	B 0	Q 1 [1] 1 [1]	_		
	A 0 0 1	B 0 1 0	Q 1 [1] 1 [1] 0 [1]	-		
	A 0 0 1 1	B 0 1 0 1	Q 1 [1] 1 [1] 0 [1] 1 [1]			
6 a	A 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B 0 1 0 0 1 erator is	Q 1 [1] 0 [1] 1 [1] 0 [1] 1 [1] sused for finding	the "quotient"		2
6 a 6 b	A 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B 0 1 0 1 erator is	Q 1 [1] 1 [1] 0 [1] 1 [1] sused for finding	the "quotient"	One mark if workings out are generally correct but final	2