A Level DT Maths lessons

Red text and boxes indicate the correct methods of working out and the answers

AQA specification (content to be learnt for the exam)

7.1 Maths

Ref	Maths skills requirement	Potential applications: product design		
а	Confident use of number and percentages	Calculation of quantities of materials, costs and sizes		
b	Use of ratios	Scaling drawings		
С	Calculation of surface areas and/or volumes	Determining quantities of materials		
d	Use of trigonometry	Calculation of sides and angles as part of product design		
е	Construction, use and/or analysis of graphs and charts	Representation of data used to inform design decisions and evaluation of outcomes.		
		Presentation of market data, user preferences, outcomes of market research		
f	Use of coordinates and geometry	Use of datum points and geometry when setting out design drawings		
g	Use of statistics and probability as a measure of likelihood	Interpret statistical analyses to determine user needs and preferences. Use data related to human scale and proportion to determine product scale and dimensions		

First Question

 A lounge chair is to be manufactured by laminating seven layers of 1.5mm thick, 100mm wide ash veneer together to form each side of the chair frame.

Figure 1 below shows detail of the side profile for each side frame used in the assembly of the chair.

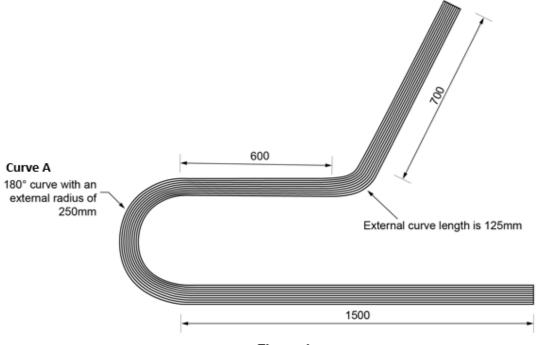


Figure 1

- (a) The manufacturer cuts all seven veneers to the same length; the sum of the chair's three straight sections, added to the length of both external curves. Assume no excess will be needed for trimming on the width of the laminated framework.
 - i) Determine the length of the external curve A shown in Figure 1.
 Give your answer to the nearest whole number.

7. Award marks as stated

(a) Mathematical calculations

i)	[3	marks]			
1 mark	Use of correct formula and correct substitution:				
	Circumference of external curve as a full circle				
	$C = \pi \times D$				
	$C = \pi \times 500$, or $2 \times \pi \times 250$				
	C = 1,571 mm (or equivalent)				
1 mark	Length of 180° of external curve:				
	180 / 360 × 100 = 50% of full circle circumference				
1 mark	Length of external curve:				
	1,571 × 50 / 100 = 785.5 mm. Rounded to 786mm.				

7. Award marks as stated

(a) Mathematical calculations

i) [3 marks]

1 mark	Use of correct formula and correct substitution:				
	Circumference of external curve as a full circle				
	$C = \pi \times D$				
	$C = \pi \times 500$, or $2 \times \pi \times 250$				
	C = 1,571 mm (or equivalent)				
1 mark	Length of 180° of external curve:				
	180 / 360 × 100 = 50% of full circle circumference				
1 mark	Length of external curve:				
	1,571 × 50 / 100 = 785.5 mm. Rounded to 786mm.				

https://corbettmaths.com/2013/12/21/circumference-video-60/

	ii)	Determine the total length of veneer used in the construction of the two side frames for the chair.	[2 marks]
(h.)		h vancar for constructional numbers retails at C20 45 per metro equar	- (m²)
(b)	Cal the	h veneer for constructional purposes retails at £20.45 per metre square lculate the cost of the veneer needed to manufacture two side frames to chair. Include an additional 15% of veneer to allow for waste/trimming we your answer in pounds and pence.	for

	ii)	[2 mark	s]			
	1 mark	Adding component lengths together:				
	1500 + 786 + 600 + 125 + 700 = 3,711 mm					
	1 mark Two side frames each with 7 veneers:					
	3711 × 7 × 2 = 51,954 mm. Accept answer in metres e.g. 5					
(b)	o) Mathematical calculations		s]			
	1 mark	Area of veneer:				
		51.95m × 0.1m wide = 5.195 m ²				
		Plus 15 %:				
		5.195 × 1.15 = 5.97425 = 5.97 m ²				
	1 mark £20.45 × 5.97 = 122.0865 = £122.09					

ii)

[2 marks]

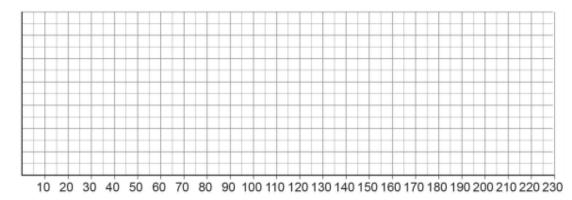
1 mark	Adding component lengths together:
	1500 + 786 + 600 + 125 + 700 = 3,711 mm
1 mark	Two side frames each with 7 veneers:
	3711 × 7 × 2 = 51,954 mm. Accept answer in metres e.g. 51.95m

(b) Mathematical calculations

[2 marks]

1 mark	Area of veneer:	
	51.95m × 0.1m wide = 5.195 m ²	
	Plus 15 %:	
	5.195 × 1.15 = 5.97425 = 5.97 m ²	
1 mark	£20.45 × 5.97 = 122.0865 = £122.09	

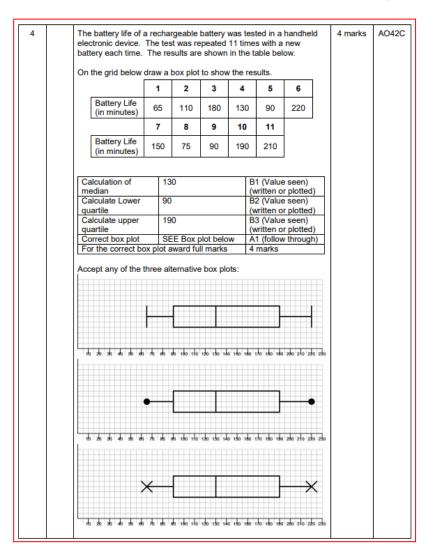
Next Question — Box Plots


The battery life of a rechargeable battery was tested in a handheld electronic device. The test was repeated 11 times with a new battery each time.

The results are shown in the table below.

	1	2	3	4	5	6	7	8	9	10	11
Battery life (in minutes)	65	110	180	130	90	220	150	75	90	190	210

On the grid below draw a box plot to show the results.


[4 marks]

https://corbettmaths.com/wp-content/uploads/2013/02/box-plots-pdf.pdf

https://corbettmaths.com/2013/05/15/drawing-and-reading-box-plots/

2019 DT Paper 2

Next Question - Probability

0 5

When producing a die cut package, three different, independently occurring faults are possible with these probabilities:

Fault A: 1/100 Fault B: 1/100 Fault C: 1/500

A and B are minor faults which must be monitored but will only fail quality control if both faults are seen on a single product.

C is a critical fault and any product suffering from this fault will fail quality control.

If a batch of 10 000 packages are produced, calculate how many products would be expected to fail quality control.

[3 marks]

https://corbettmaths.com/wp-content/uploads/2014/08/probability-pdf.pdf

5	When producing a die cut poccurring faults are possible	ependently	3 marks	AO42C	
	Fault A: 1/100 Fault B: 1/100 Fault C: 1/500				
		hich must be monitored but s are seen on a single produ			
	C is a critical fault and any quality control.	product suffering from this f	ault will fail		
	If a batch of 10 000 packag products would be expecte				
	Calculate probability of Fault A and B				
	Calculate probability of Fault A and B or C	1/100 × 1/100 + 1/500 = 21/10000 or 0.01 × 0.01 + 0.005 = 0.0021 or 2.1 × 10 ⁻³ 1/10000 + 1/500 = 21/10000	M2		
	Calculate expected number of failures	21 products or 21	M3		
	For the correct answer aw	ard full marks	3 marks		

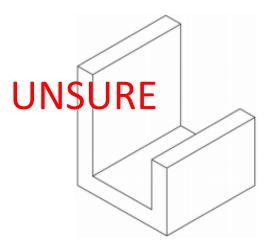
5		package three different, inde le with these probabilities:	ependently	3 marks	AO420
		which must be monitored but ts are seen on a single produ			
	C is a critical fault and any quality control.	product suffering from this f	ault will fail		
	If a batch of 10 000 packa products would be expect	ges are produced, calculate ed to fail quality control.	how many		
	Calculate probability of Fault A and B	1/100 × 1/100 or 0.01 × 0.01 = 1/10000 or 0.0001	M1		
	Calculate probability of Fault A and B or C	1/100 × 1/100 + 1/500 = 21/10000 or 0.01 × 0.01 + 0.005 = 0.0021 or 2.1 × 10 ⁻³ 1/10000 + 1/500 = 21/10000	M2		
	Calculate expected number of failures	21 products or 21	M3		
	For the correct answer as				

Next Question - Volumes

1 2 Figure 4 shows a low carbon steel component with a volume of 11 100 mm³

The density of low carbon steel is 7.85 g/cm3

The component is to be hot dip galvanised.


The galvanising process increases the mass of the component by 5%

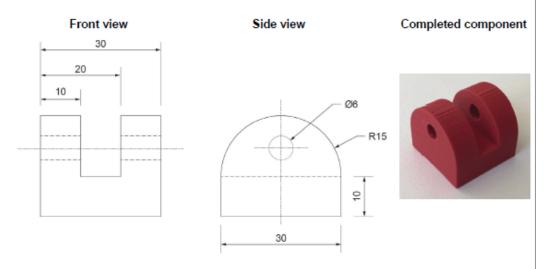
Calculate the mass of the galvanised component in grams.

Show your working out.

[3 marks]

Figure 4
Isometric view

https://www.youtube.com/watch?v=sv7zflLeduM


2019 DT Paper 2 Figure 4 shows a low carbon steel component with a volume of 3 marks 11 100 mm³ The density of low carbon steel is 7.85 g/cm3 The component is to be hot dip galvanised. The galvanising process increases the mass of the component by 5% Calculate the mass of the galvanised component in grams. Show your working out. Figure 4 Isometric view $7.85g/cm^3 =$ M1 Conversion of density 0.00785g/mm³ into g/mm3 7.85 x 10⁻³ Conversion of volume into cm3 or 11 100 = 11.1cm3 Calculate the mass prior 11 100 x their 0.007 85 to galvanising = their 87.135 grams (application of volume x density calculation) 87.135 x 1.05 Calculate the mass once = [91, 91.5] grams For the correct answer award full marks 3 marks

https://corbettmaths.com/wp-content/uploads/2013/02/density-pdf.pdf

Next Question – Volumes, Mass and Density

0 8 Figure 4 shows the dimensions of a component to be made using 3D printing.

Figure 4 All dimensions in mm Not drawn to scale

	Material costs					
Material	Printed density (grams per mm³)	Cost per 500 g				
ABS	0.000 448 g	£18				

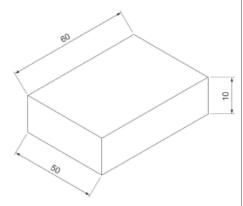
Calculate the material cost of manufacturing 50 units.

Show your working out.

[5 marks]

2019 DT Paper 1

8		3D printing. (Shown in Qu	nsions of a component to be ma estion Paper) at of manufacturing 50 units.	ade using	5 marks	AO41C
		Cuboid Volume	30 × 30 × 10 = 9000 mm ³	1 mark (M1)		
		Cross Section of semi circle	$\frac{1}{2} \times \pi \times 15^2 - \pi \times 3^2$ = 103.5 π	1 mark (M1)		
			Or			
			= 353.25 - 28.26			
			= [324.99, 325.197]			
		Total Volume	Cross section × 20 + base	1 mark (A1)		
			Their [324.99, 325.197] × 20 + 9000			
			= [15499.8, 15503.94]			
		Mass of Shape	Density × Volume 0.000448 × their [15499.8, 15503.94] mm ³ = [6.944, 6.946 g]	1 mark (M1)		
		Cost of 50 units	mass × 50 units their [6.944, 6.946g] × 50 =[347.26, 347.3] / 500g × 18 = £12.50	1 mark (A1)		
		Cost of 50 units Where no working has been shown but final answer is accurate	= £12.50	5 marks		


Next Question -

T 1 1 Figure 5 shows an aluminium seat clamp. Figure 6 shows the dimensions of a block of aluminium.

Figure 5

Figure 6 All dimensions in mm Not drawn to scale

The seat clamp is currently manufactured by wastage from the aluminium block shown in Figure 6.

The manufacturer wants to produce the clamp using a redistribution process.

Compare the cost of each manufacturing process if 5000 units are to be produced.

Show your working out.

Volume of the seat clamp	7280 mm ³
Cost of aluminium	£4 per 100 000 mm³
Cost of manufacturing a mould for the redistribution process	£3000

[6 marks]

2019 DT Paper 1

11	Figure 5 shows an aluminic dimensions of a block of alu				6 marks	AO41C
	Compare the cost of each manufacturing process if 5000 units are to be produced.					
	Show your working out.					
	The volume of the seat	clamp	7280	mm ³		
	The cost of aluminium		£4 per 100	0000 mm ³		
	The cost of manufactu for the redistributio		£30	000		
	Machined seat clamp					
	Block volume	10 × 50 × 60 =30 000 mm ³		1 mark (M1)		
	Recognition of correct equation	Block volume aluminium	+ cost of	1 mark (M1)		
	Cost for one machined seat clamp	Their 30 000 + £4 = £1.20 per cla		1 mark (M1)		
	Cost of 5000 machined seat clamps	Their 1.20 X 5 = £6000	000	1 mark (A1)		
	Cost of 5000 machined seat clamps Where no working has been shown but final answer is accurate	£6000		4 marks		
	Redistribution seat clamp					
	Cost for one redistribution seat clamp (without mould factored in)	7280 + 100 00 = [£0.29, £0.29		1 mark (A1)		
	Cost of 5000 redistribution seat clamps	Their [£0.29, £ 5000 + 3000 = [£4450, £446		1 mark (A1)		
	Cost of 5000 redistribution seat	= [£4450, £446	60]	2 marks		

Next Question – Volumes and cost

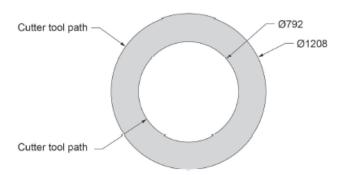
1 5 A manufacturer is producing a glass reinforced plastic (GRP) moulding.

Calculate the volume of hardener needed.

Show all of your working.

Size of GRP mat needed for moulding	2 metres × 5 metres
Ratio of resin to hardener	3:2
Total volume of liquid (resin and hardener) needed per m² of GRP matting	3 litres per m ²

[4 marks]


2019 DT Paper 1

15	A manufacturer is producing a glass reinforced plastic (GRP) moulding. Calculate the volume of hardener needed. Show all of your working. Size of GRP mat needed for moulding 2 metres × 5 metres					AO41C
			2 111000			
	Ratio of resin to hardener			3:2		
	Total volume of liquid (res needed per m ² of GRP ma		3 litr	es per m²		
	Area of Matting	2 × 5 = 10m ²		1 mark (M1)		
	Total volume of liquid needed	10 × 3 = 30 litres		1 mark (A1)		
	Ratio factor	3 + 2 = 5 parts 30 ÷ 5 = 6 litres		1 mark (M1)		
	Hardener needed	6I × 2 =12 litres of hard	ener	1 mark (A1)		
	Volume of hardener needed Where no working has been shown but final answer is accurate	= 12 litres of hard	lener	4 marks		

Next question -

Figure 10 shows a component to be cut on a computer numerically controlled (CNC) router.

Figure 10 All dimensions in mm Not drawn to scale

Material	Depth of cut per pass	Rate of cut
12 mm MDF	6 mm	6 metres per minute
12 mm plywood	4 mm	4.5 metres per minute

Calculate how long it would take to machine the shape in each of the materials.

Show your working out.

[6 marks]

2019 DT Paper 1

9	controlled (CNC) router. (S			6 marks	AO410
	Calculate how long it woul the materials.	d take to machine the shape	in each of		
	Circumference of circles	Outer tool path - π d $\pi \times 1208$ = [3793.12mm, 3795.54mm] Inner tool path - π d $\pi \times 792$ = [2486.88mm, 2488.46mm] Total distance of travel [3793.12mm, 3795.54mm] + =[2486.88mm, 2488.46mm]	1 mark (M1)		
		=[6280mm, 6284mm]	(A1)		
	Distance of travel in MDF	Total distance × passes [6280mm, 6284mm] × 2 =[125 60mm, 125 68mm] / 1000 =12.56 meters	1 mark (M1) 1 mark (A1)		
	Distance of travel in Ply	Total distance × passes [6280mm, 6284 mm] × 3 =[188 40 mm, 188 52] / 1000 =[18.84 meters, 18.85 meters]			
	Time taken in MDF	[125 60mm, 125 68mm] + 6 =2.09 minutes or =2 minutes 5 secs	1 mark (M1) 1 mark (A1)		
	Time taken in Ply	[18.84 metres, 18.85 meters]+ 4.5 =[4.18 minutes,4.19 minutes] or =4 minutes 11 secs			
	Time taken in MDF where no working has been shown but final answer is accurate	=2.09 minutes or =2 minutes 5 secs	3 marks		

Next question -

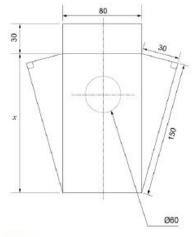

0 2

Figure 1 shows an image of a ceiling light.
Figure 2 shows the aluminium sheet net made for this light.

Figure 1

Figure 2

All dimensions in mm Not to scale

0 2 . 1	Calculate the length of side X.	Specimen 2019 DT Paper 1
	Show your answer to two decimal places.	[2 marks]
02.2	Calculate the surface area of the net shown in Figure removed.	2, with the circular hole
	Show your answer to two decimal places.	[3 marks]
0 2 . 3	Calculate the percentage reduction in surface area cau was cut out.	sed when the circular hole
	Show your answer to two decimal places.	[2 marks]
-		
-		

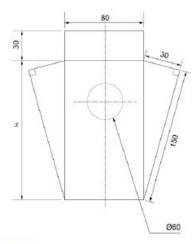

0 2

Figure 1 shows an image of a ceiling light.
Figure 2 shows the aluminium sheet net made for this light.

Figure 1

Figure 2

All dimensions in mm Not to scale

AO4 = 1C

Substitute measurements in to Pythagoras theorem equation	$x^2 = 30^2 + 150^2$	1 mark
Correct calculation of side 'x'	x = 152.97 (2dp)	1 mark

If the correct answer is seem, award full marks (use wording of live papers)

Show your answer to two decimal places.

0 2 . Calculate the surface area of the net shown in Figure.2, with the circular hole removed.

[3 marks]

AO4 = 1C

Calculate area of circle	$=\pi r^2$	1 mark
	$=\pi \times (30 \times 30)$	
	=2826	
	[2826, 2827.8]	
Calculate area of triangular sides	Area of triangle = ½ x base x height	1 mark
	= ½ x 30 x 150	
	= 2250	
	2250 x 2 = 4500	
Calculate area of large	Area of rectangle = 80 x 152.97	
rectangle	(or their 2ai)	
	= 12 237.6	
Calculate area of smaller	Area of rectangle =	
rectangle	80 x 30	
	= 2400	
Total area	= 4500 + 12 237.6 + 2400 - 2826	1 mark
	[16 310, 16 311.6]	

0 2 . 3 Calculate the percentage reduction in surface area caused when the circular hole was cut out.

Show your answer to two decimal places.

[2 marks]

AO4 = 1C

	Percentage area removed = Area of circle ÷ Area of net x 100%	1 mark
Calculate percentage area removed	= 2827.8 ÷ 19 137.6 x 100	1 mark
	=[14.77%, 14.78%]	

Next question -

CNC coordinates have been used to create the program required to laser cut a part from sheet aluminium.

Plot the coordinates on the grid below and use this to calculate the total area of the part.

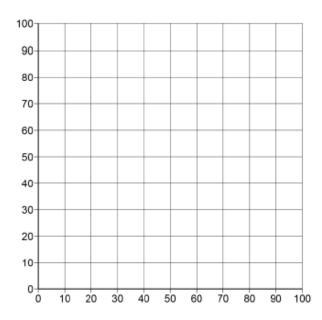
[5 marks]

CNC coordinates:

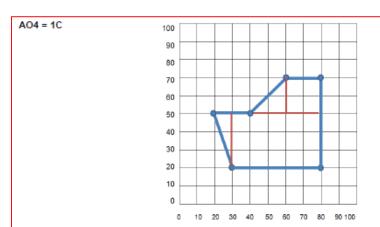
(30,20)

(80, 20)

(80,70)


(60,70)

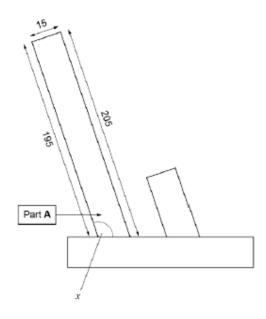
(40,50)


(20,50)

(30,20)

All dimensions in mm

Specimen 2019 DT Paper 1


Plot coordinates correctly	See image above	1 mark
Draw lines to define shape	See image above	1 mark
Any rectangular area calculated correctly	e.g. Area1 = 50 x 30 = 1500 Area 2 = 20 x 20 = 400	1 mark
Any triangular or trapezoidal area calculated correctly	e.g. Area $3 = \frac{1}{2} \times 10 \times 30 = 150$ Area $4 = \frac{1}{2} \times 20 \times 20 = 200$ Area of trapezoid = $\frac{a+b}{2} \times b$ = $\frac{60+50}{2} \times 30$ = $\frac{60+50}{2} \times 30$	1 mark
Calculate total area	Total area = 1500 + 400 + 150 + 200 =2250mm ²	1 mark

Next question -

1 0 Figure 7 shows a dimensioned side view of a prototype for a menu holder.

Using the information provided, calculate the angle of \boldsymbol{x}

Figure 7

All dimensions in mm. Not to scale. [4 marks]

1 0 Figure 7 shows a dimensioned side view of a prototype for a menu holder. Using the information provided, calculate the angle of *x*

[4 marks]

AO4 = 1C

Set out equation	tan a = opposite ÷ adjacent	1 mark
Substitute values	tan a = 15/10	1 mark
Calculate angle	a = tan ⁻¹ 1.5	1 mark
	a = 56.3°	
Cutting angle	180-56.3 = 123.7°	1 mark

Alternative method

Set out equation	tan b = opposite ÷ adjacent	1 mark
Substitute values	tan b = 10/15	1 mark
Calculate angle	b = tan ⁻¹ 0.666	1 mark
	b = 33.7°	
Cutting angle	180 - 90 - 33.7 = 56.3°	1 mark
	180 - 56.3 = 123.7°	

Next Question – Volume of Sphere

Figure 4 shows a tea infuser designed by Marianne Brandt.

Analyse and evaluate how well the tea infuser follows the principles and ethos of the Bauhaus Design School.

[6 marks]

Figure 4

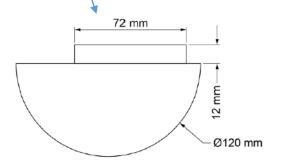

 $\boxed{\mathbf{0} \ \mathbf{2}}$. $\boxed{\mathbf{2}}$ The volume of a sphere is $4/3\pi r^3$

Figure 5 shows a side view of the hemispherical base and cylindrical top section of Marianne Brandt's tea infuser.

Calculate the total volume of these parts of the tea infuser.

[4 marks]

Figure 5

Specimen 2019 DT Paper 2

The volume of a sphere is $4/3\pi r^3$ Figure 5 shows a side view of the hemispherical base and cylindrical top section of Marianne Brandt's tea infuser. Calculate the total volume of these parts of the tea infuser.				
	[4 mark:			
AO4 = 2C				
Calculate volume of cylinder	πr ² h =3.14 x 36 x 36 x 12 =48 833.28mm ³ OR =3.142 x 36 x 36 x 12 =48 864.38mm ³ (2dp) [48 833.28mm ³ , 48 864.38 mm ³]	1 mark		
Substitute values in to volume of sphere equation	$= {}^{2/3} \times 3.14 \times (60 \times 60 \times 60)$ OR ${}^{1/2} \times 4/3 \text{ mr}^3$ $= {}^{1}/_2 \times {}^{4}/_3 \times 3.142 \times 60 \times 60 \times 60$	1 mark		
Correct volume of hemisphere	[452 160mm³, 452 448mm³]	1 mark		
Calculate total volume	48833.28,48864.38 + 452160,452448 [500 993.28 mm³, 501 312.38 mm³]	1 mark		

Next question -

Figure 6 shows a standing workstation. The ideal height for the desk top is level with the elbow height of the user as shown in Figure 7.

Calculate the range of height adjustment required to accommodate the 15th to 85th percentiles of the sample shown in Table 1.

[2 marks]

Figure 6

Figure 7

Standing

Table 1 shows the ideal elbow height from a range of users.

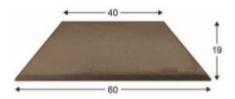
Standing elbow height	Number in sample
937	5
962	12
987	17
1012	23
1037	30
1062	38
1087	32
1112	26
1137	19
1162	14
1187	4

elbow height

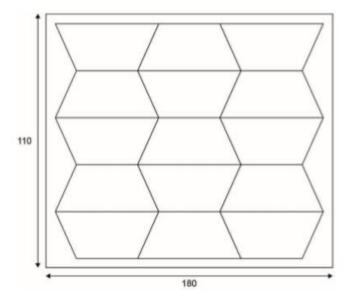
> 0 4 . 1 Calculate the range of height adjustment required to accommodate the 15th to 85th percentiles of the samples shown in Table 1.

[2 marks]

AkO4 = 2C


Calculate 15 th percentile	Calculate total in sample = 220 Calculate 15 th %ile (220÷100)x15= 33	1 mark
Calculate 85 th percentile	Calculate 85 th %ile (220÷100)x85= 187	
Give maximum and minimum heights based on data from	Range from 987mm to 1137mm or 150mm with working	1 mark
original table	seen.	

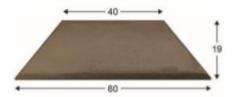
Next Question


0 7 . 1 Figure 3 shows a craft knife blade.

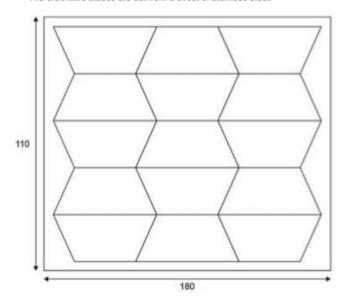
The craft knife blade is manufactured from stainless steel in the shape of a trapezium.

Figure 3 All dimensions in mm Not drawn to scale

The craft knife blades are cut from a sheet of stainless steel:


Calculate the percentage of the sheet that is wasted when 15 craft knife blades have been cut out.
Show your working out. [3 marks]

Answers


0 7 1 Figure 3 shows a craft knife blade.

The craft knife blade is manufactured from stainless steel in the shape of a trapezium.

Figure 3 All dimensions in mm Not drawn to scale

The craft knife blades are cut from a sheet of stainless steel:

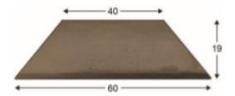
Calculate the percentage of the sheet that is wasted when 15 craft knife blades have been cut out.

METHOD TWO

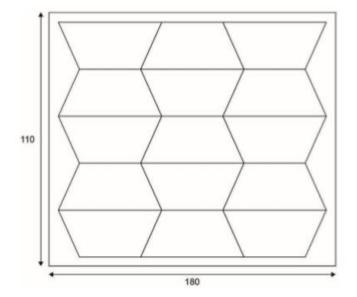
Show your working out.

[3 marks]

Area of trapezium	Area = ½ (a + b) x h	1 mark
(M1)	Area = $\frac{1}{2}$ (40 + 60) x 19 Area = 950 (mm ²)	
Calculation of total area wasted (M2)	= 15 x their Area of trapezium = 15 x 950 = 14 250 (mm²) Height of sheet x width of sheet – (15 x their area) = (180 x 110) – their 14 250 = 19 800 – 14 250 = 5550 (mm²)	1 mark
Calculation of percentage wasted (A1)	= <u>Area of sheet - (15 x their area)</u> x 100 Area of sheet = <u>19 800 - 14 250</u> x 100 19 800 = 28.03 (%) = [28, 28.03] (%)	1 mark


	METHOD TWO		
	- WETHOR TWO		
_	Area of trapezium	Area of rectangular centre = 40 x 19 = 760 (mm ²)	1 mark
	(M1)	Area of triangular ends = ½ x base x height	
		= 0.5 x 10 x 19 = 95 (mm ²)	
		Area of trapezium = 760 + 95 + 95 = 950 (mm ²)	
	Calculate %age of sheet used (M2)	Area used = 15 x their area of trapezium = 15 x 950 = 14250 (mm²)	1 mark
	()	Area of sheet = 180 x 110 = 19800 (mm ²)	
		Area of sheet used = <u>their 14 250</u> x 100 their 19 800 = [71.96,71.97]%	
	Calculate %age wasted (A1)	= 100 – their 71.97 = 28.03	1 mark

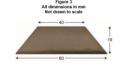
Continued...


0 7 . 1 Figure 3 shows a craft knife blade.

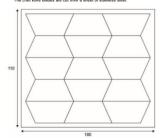
The craft knife blade is manufactured from stainless steel in the shape of a trapezium.

Figure 3 All dimensions in mm Not drawn to scale

The craft knife blades are cut from a sheet of stainless steel:



0 7.2	Each stainless steel sheet costs £4.25. 135 craft knife blades need to be manufa		material if
	Give your answer in pounds and pence.	Show your working out.	[3 marks


Continued... answer

0 7 1 Figure 3 shows a craft knife blade.

The craft knife blade is manufactured from stainless steel in the shape of a trapezium

The craft knife blades are cut from a sheet of stainless steel

[0]7].[2] Each stainless steel sheet costs £4.25. What is the total cost of the waste material if 135 craft knife blades need to be manufactured?

Give your answer in pounds and pence. Show your working out.

[3 marks]

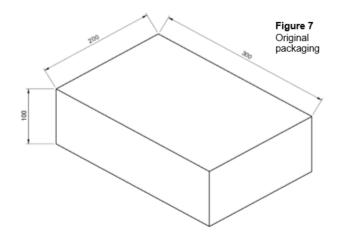
7 2 Each stainless steel sheet costs £4.25. What is the total cost of the waste material if 135 craft knife blades need to be manufactured?

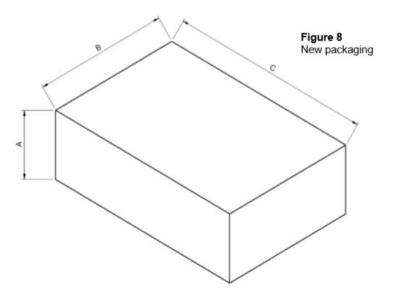
Give your answer in pounds and pence. Show your working out.

3 marks

METHOD ONE

Calculate number of sheets required (M1)	$\frac{135}{15} = 9$	1 mark
Total cost of sheets(M2)	their 9 × 4.25 = (£) 38.25	1 mark
Calculate cost of waste. Answer given in pounds and pence. (A1)	$38.25 \times \frac{28}{100}$ (or their percentage waste from 8ai) =(£) 10.71	1 mark


METHOD TWO

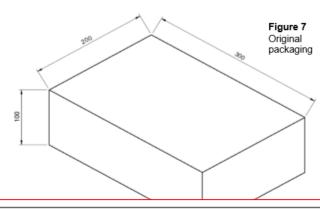

Calculate cost of 1mm ² of sheet (M1)	Area of sheet = 180 x 110 = 19 800 mm ² 4.25 + 19 800 = £0.0002 146 464	1 mark
	(mm²)	
Cost of waste from one sheet (M2)	0.0002 146 464 x 5550 (or their waste area from 8ai)	1 mark
	= (£)1.1912 878 788	
Cost of waste from 9 sheets. Answer given in pounds and pence. (A1)	£1.1912 878 788 x 9 = £10.7216 = (£) 10.72	1 mark

Next question...

1 4

A video games manufacturer wants to reduce the amount of packaging for one of their products. The packaging is to keep the same proportions, but has a volume reduction of 25%.

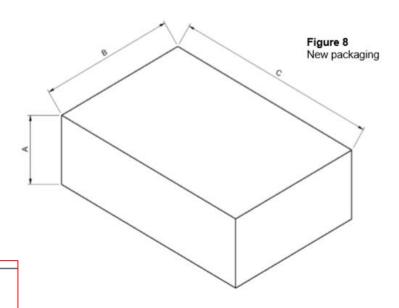
Calculate the new length of each side to 2 decimal places. Show your working.


[4 marks]

Α_	mm
В_	mm
С	mm

Answers

1 4


A video games manufacturer wants to reduce the amount of packaging for one of their products. The packaging is to keep the same proportions, but has a volume reduction of 25%.

Answer requires candidate to use a volume scale factor to calculate the answer

Calculate existing volume of games console: 100x200x300 = 6 000 000 mm ³	1
b. Calculate 75% volume: 6 000 000 x .75 = 4 500 000 mm ³	
Recognition of volume scale factor as 0.75 Application of ³ √ 0.75 to get the length scale factor: = 0.90856	1
Use of ³ √0.75 to convert each length	

5 marks AO42C

$A = \sqrt[3]{0.75} \times 100 = 90.86 \text{ mm}$	1
B = ³ √0.75 X 200 = 181.71 mm	1
$C = \sqrt[3]{0.75} \times 300 = 272.57 \text{ mm}$	1

Next question...

1 5

The photograph below shows an Eames chair.

A furniture maker is manufacturing a replica of the foot stool shown above, using a one-piece foam mould and vacuum bag.

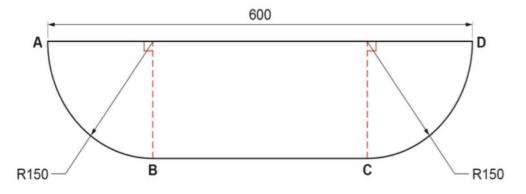
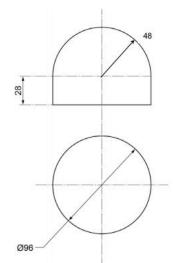


Figure 9 (foam mould)

Not drawn to scale All dimensions in mm It is going to be manufactured from seven layers of 1.5mm plywood. Using the dimensioned drawing (**Figure 9**), calculate the length of plywood needed for the **outside** layer of the lamination along the length ABCD to the nearest millimetre.

[4 marks]

٠,				
	15	The response shows a calculation to work out an arc length or the two arcs length combined $2\pi \times \frac{150}{4} \text{ or } [235.5, 236]$ or $2\pi \times \frac{150}{2}$ or $[471, 472]$ The response shows calculations to work out the total length of the inner layer touching the foam former. $2\pi \times \frac{150}{4} \times 2 + 300 \text{ or } [235.5, 236] \times 2 + 300$ or $2\pi \times \frac{150}{2} + 300 \text{ or } [471, 472] + 300$	1 mark 2 marks	
		The response shows calculations as above and some compensation for the increased radii but may use the wrong number of layers. The response shows full calculations to compensate for the increased radii due to seven layers of plywood	3 marks 4 marks	4 marks AO42C
		R = 150 + (7 × 1.5) = 160.5 $2\pi \times 160.5/2 + 300 = (504.23 + 300)$ $2\pi \times \frac{160.5}{2} + 300 \text{ or } [503.97, 504.3] + 300$ or [803.97, 804.3] Outside length = 804mm (nearest millimetre)		


Next question.....

4

0 2

Figure 1 shows a dimension drawing of a paper weight that is to be cast in pewter.

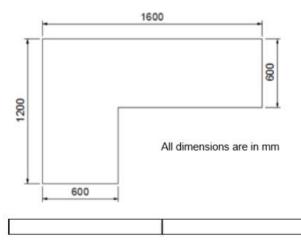
[5 marks]

All dimensions in mm

Figure 1

The density of pewter is 7.29g/cm³. Calculate the mass of the paper weight to the nearest whole gram.

2				5 marks
	Volume of	π r²h	1 mark	IIIGIKS
	cylinder	3.142 x 4.8 ² x 2.8		
		202.670 (3sf)		
	Volume of	2/3πr ³	2 marks	
	hemisphere	2 /3 x 3.142 x 4.8 ³		
		231.623(3sf)		
	Total volume	202.670 + 231.623	1 mark	
		= 434.35cm ³		
	Mass = Density x	Mass = 7.29 X	1 mark	
	Volume	434.35		
		Mass =		
		3166.412g(3sf)		
		3166g		


Next question...

0 9

Figure 2 shows an office desk. The top of the office desk can be made from either solid oak or oak veneered MDF.

The dimensions of the desk top are shown below.

♦ 18

The stock forms and prices of solid oak, oak veneered MDF and edging tape are shown in the table below.

	Solid oak	Oak veneered MDF	Edging tape
Stock	PAR plank	Sheet	50 meter roll
Size	100 × 18	2440 × 1220 × 18	19mm thickness
Cost	£ 6.70 per metre	£46.60	£1.50 per metre

How much would it cost to make the table top in each of the two materials?		
Oak Veneered MDF desktop cost	£	
Solid oak desktop cost	£	

Answers

The stock forms and prices of solid oak, oak veneered MDF and edging tape are shown in the table below.

	Solid oak	Oak veneered MDF	Edging tape
Stock	PAR plank	Sheet	50 meter roll
Size	100 × 18	2440 × 1220 × 18	19mm thickness
Cost	£ 6.70 per metre	£46.60	£1.50 per metre

How much would it cost to make the table to	[6 marks]	
Oak Veneered MDF desktop cost	£	
Solid oak desktop cost	£	

Veneered MDF		
Area of full sheet	2440 × 1220= 2.98 m ²	1 mark
Area of table top	600 × 1600 + 600 × 600=1.32m ²	Tillaik
Cost of table top	1.32 ÷ 2.98 × 46.60= £20.64	1 mark
Perimeter of table top	1600+1200+600+600+600+10 00=5600 mm = 5.6m	1 mark
Edging Strip	5.6 × 1.5= £ 8.40	
Total cost	£20.64 + £8.40 = £29.04	1 mark
Solid Oak		
	6 planks @ 1.6m = 9.6m 6 planks @ 0.6m = 3.6m	1 mark
Total length needed	9.6 + 3.6 = 13.2m	
Total cost	13.2 × £6.70 = £88.44	1 mark

Next question...

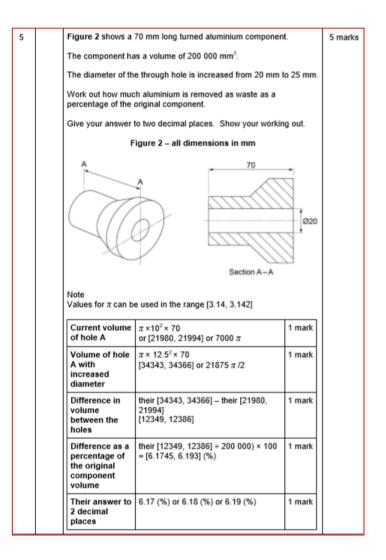


Figure 2 shows a 70 mm long turned aluminium component.

The component has a volume of 200 000 mm3.

The diameter of the through hole is increased from 20 mm to 25 mm.

Work out how much aluminium is removed as waste as a percentage of the original component.

Give your answer to two decimal places. Show your working out.

[5 marks]

Figure 2 - all dimensions in mm

Not drawn to scale

	Section A-A	
		-
_		_
_		-
_		-
	Answer	

Next questions...

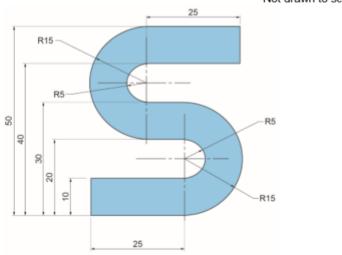
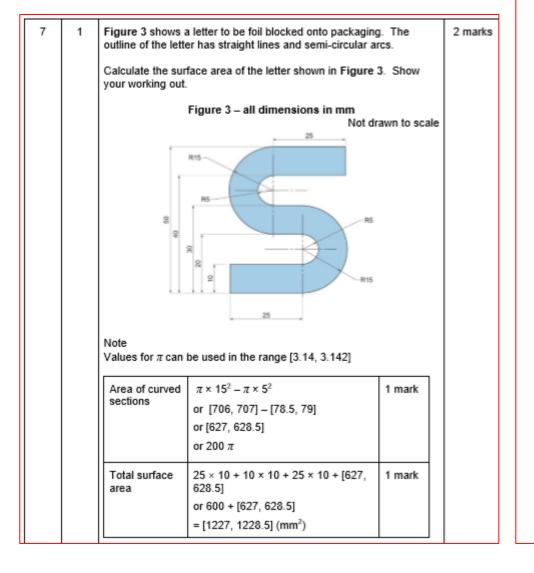

0 7 . 1

Figure 3 shows a letter to be foil blocked onto packaging. The outline of the letter has straight lines and semi-circular arcs.

Calculate the surface area of the letter shown in **Figure 3**. Show your working out. [2 marks]

Figure 3 - all dimensions in mm


Not drawn to scale

Answer	

0 7 . 2	The dimensions of the letter shown in Figure 3 are all increased by 50% Work out the surface area of the enlarged letter.				
	Give your answer to two decimal places. Show your working out.	[2 marks]			

Next question...

The dimensions of the letter shown in Figure 3 are all increased by 2 marks 50% Work out the surface area of the enlarged letter. Give your answer to two decimal places. Show your working out. Note Values for π can be used in the range [3.14, 3.142] $(1.5 \times 25) \times (1.5 \times 10) + (1.5 \times 10) \times (1.5 \times$ Area of new $10) + (1.5 \times 25) \times (1.5 \times 10)$ mark rectangular or 37.5 × 15 + 15 × 15 + 37.5 × 15 sections or 562.5 + 225 + 562.5 or area of or 1350 curved sections or 600 × 1.52 or 1350 or $\pi \times 22.5^2 - \pi \times 7.5^2$ or [1589, 1591] - [176, 177] or [1412, 1415] or [627, 628.5] × 1.52 or [1412, 1415] Total 1350 + [1412, 1415] = [2762, 2765] surface mark area or [1227, 1228.5] \times 1.5² = [2762, 2765] or Alternative method Scale factor = 1.5^2 1 mark Calculate scale factor

1.52 x their area from 7.1

2.25 x [1227.95,1228.4] =

[2762.89, 2763.9]

1 mark

Calculate new

surface area